Matches in SemOpenAlex for { <https://semopenalex.org/work/W2948421839> ?p ?o ?g. }
Showing items 1 to 60 of
60
with 100 items per page.
- W2948421839 abstract "Sparse regression methods are used for the reconstruction of compressed signals, that are usually sparse in some bases; or in feature selection problem, where only few features are meaningful. This thesis overviews the existing Bayesian methods for dealing with sparsity, improves them and provides new models for these problems. The novel models decrease complexity, allow to model structure and provide uncertainty distributions in such applications as medicine and computer vision.The thesis starts with exploring Bayesian sparsity for the problem of compressive back- ground subtraction. Sparsity naturally arises in this problem as foreground usually occupies only small part of the video frame. The use of Bayesian compressive sensing improves the solutions in independent and multi-task scenarios. It also raises an important problem of exploring the structure of the data, as foreground pixels are usually clustered in groups.The problem of structure modelling in sparse problems is addressed with hierarchical Gaussian processes, that are the Bayesian way of imposing structure without specifying its exact patterns. Full Bayesian inference based on expectation propagation is provided for offline and online algorithms. The experiments demonstrate the applicability of these methods for the compressed background subtraction and brain activity localisation problems.The majority of sparse Bayesian methods are computationally intensive. This thesis proposes a novel sparse regression method based on the Bayesian neural networks. It makes the prediction operation fast and additionally estimates the uncertainty of predictions, while requiring a longer training phase. The results are demonstrated in the active learning scenario, where the estimated uncertainty is used for experiment design.Sparse methods are also used as part of other methods such as Gaussian processes that suffer from high computational complexity. The use of active sparse subsets of data improves the performance on large datasets. The thesis proposes a method of dealing with the complexity problem for online data updates using Bayesian filtering." @default.
- W2948421839 created "2019-06-14" @default.
- W2948421839 creator A5090844403 @default.
- W2948421839 date "2018-10-01" @default.
- W2948421839 modified "2023-09-27" @default.
- W2948421839 title "Sparse Machine Learning Methods for Autonomous Decision Making" @default.
- W2948421839 hasPublicationYear "2018" @default.
- W2948421839 type Work @default.
- W2948421839 sameAs 2948421839 @default.
- W2948421839 citedByCount "1" @default.
- W2948421839 countsByYear W29484218392020 @default.
- W2948421839 crossrefType "dissertation" @default.
- W2948421839 hasAuthorship W2948421839A5090844403 @default.
- W2948421839 hasConcept C107673813 @default.
- W2948421839 hasConcept C119857082 @default.
- W2948421839 hasConcept C124851039 @default.
- W2948421839 hasConcept C138885662 @default.
- W2948421839 hasConcept C153180895 @default.
- W2948421839 hasConcept C154945302 @default.
- W2948421839 hasConcept C160234255 @default.
- W2948421839 hasConcept C2776401178 @default.
- W2948421839 hasConcept C41008148 @default.
- W2948421839 hasConcept C41895202 @default.
- W2948421839 hasConceptScore W2948421839C107673813 @default.
- W2948421839 hasConceptScore W2948421839C119857082 @default.
- W2948421839 hasConceptScore W2948421839C124851039 @default.
- W2948421839 hasConceptScore W2948421839C138885662 @default.
- W2948421839 hasConceptScore W2948421839C153180895 @default.
- W2948421839 hasConceptScore W2948421839C154945302 @default.
- W2948421839 hasConceptScore W2948421839C160234255 @default.
- W2948421839 hasConceptScore W2948421839C2776401178 @default.
- W2948421839 hasConceptScore W2948421839C41008148 @default.
- W2948421839 hasConceptScore W2948421839C41895202 @default.
- W2948421839 hasLocation W29484218391 @default.
- W2948421839 hasOpenAccess W2948421839 @default.
- W2948421839 hasPrimaryLocation W29484218391 @default.
- W2948421839 hasRelatedWork W1554288356 @default.
- W2948421839 hasRelatedWork W1884762066 @default.
- W2948421839 hasRelatedWork W2103442517 @default.
- W2948421839 hasRelatedWork W2162221686 @default.
- W2948421839 hasRelatedWork W2405778879 @default.
- W2948421839 hasRelatedWork W2724459664 @default.
- W2948421839 hasRelatedWork W2805880533 @default.
- W2948421839 hasRelatedWork W2888180323 @default.
- W2948421839 hasRelatedWork W2893754417 @default.
- W2948421839 hasRelatedWork W2949807872 @default.
- W2948421839 hasRelatedWork W2950794910 @default.
- W2948421839 hasRelatedWork W2963538135 @default.
- W2948421839 hasRelatedWork W2965998033 @default.
- W2948421839 hasRelatedWork W2980725178 @default.
- W2948421839 hasRelatedWork W2991891372 @default.
- W2948421839 hasRelatedWork W3013795978 @default.
- W2948421839 hasRelatedWork W3014266848 @default.
- W2948421839 hasRelatedWork W3163827262 @default.
- W2948421839 hasRelatedWork W3183065623 @default.
- W2948421839 hasRelatedWork W2187960569 @default.
- W2948421839 isParatext "false" @default.
- W2948421839 isRetracted "false" @default.
- W2948421839 magId "2948421839" @default.
- W2948421839 workType "dissertation" @default.