Matches in SemOpenAlex for { <https://semopenalex.org/work/W2948427265> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W2948427265 abstract "Hypertension is becoming a global epidemic for the developing world and continuous blood pressure monitoring and early diagnosis is vital for the prevention of this disease. However, in real life, patients are usually unable to maintain frequent monitoring because of reasons that include forgetfulness, human error and/or machine error. This paper presents a personalized prediction model for blood pressure using Recurrent Kernel Extreme Reservoir Machine (RKERM). This technique combines reservoir computing with RKELM to perform multistep ahead prediction. We use RKERM for blood pressure prediction and its performance is evaluated with other ELM based prediction algorithms. To evaluate our model, we use real world blood pressure data collected from Malaysian population consisting of hypertensive and non-hypertensive patients. The experimental results show that the proposed prediction mechanism has higher prediction accuracy than existing ELM methods." @default.
- W2948427265 created "2019-06-14" @default.
- W2948427265 creator A5020506138 @default.
- W2948427265 creator A5033305738 @default.
- W2948427265 creator A5050949041 @default.
- W2948427265 creator A5087387437 @default.
- W2948427265 date "2019-02-02" @default.
- W2948427265 modified "2023-09-23" @default.
- W2948427265 title "A Personalized Blood Pressure Prediction Model Using Recurrent Kernel Extreme Reservoir Machine" @default.
- W2948427265 cites W1656898673 @default.
- W2948427265 cites W189357448 @default.
- W2948427265 cites W1968918799 @default.
- W2948427265 cites W1983946671 @default.
- W2948427265 cites W2016210396 @default.
- W2948427265 cites W2025224198 @default.
- W2948427265 cites W2025697666 @default.
- W2948427265 cites W2036451492 @default.
- W2948427265 cites W2052912973 @default.
- W2948427265 cites W2076127024 @default.
- W2948427265 cites W2083817839 @default.
- W2948427265 cites W2101605059 @default.
- W2948427265 cites W2111072639 @default.
- W2948427265 cites W2127076562 @default.
- W2948427265 cites W2137687977 @default.
- W2948427265 cites W2162772535 @default.
- W2948427265 cites W22040386 @default.
- W2948427265 cites W2256527444 @default.
- W2948427265 cites W2477754002 @default.
- W2948427265 cites W2561779441 @default.
- W2948427265 cites W2588815870 @default.
- W2948427265 cites W2604922364 @default.
- W2948427265 cites W2735629075 @default.
- W2948427265 cites W2782836721 @default.
- W2948427265 cites W2795584780 @default.
- W2948427265 cites W3163650977 @default.
- W2948427265 cites W4254209755 @default.
- W2948427265 doi "https://doi.org/10.1007/978-3-030-12388-8_62" @default.
- W2948427265 hasPublicationYear "2019" @default.
- W2948427265 type Work @default.
- W2948427265 sameAs 2948427265 @default.
- W2948427265 citedByCount "0" @default.
- W2948427265 crossrefType "book-chapter" @default.
- W2948427265 hasAuthorship W2948427265A5020506138 @default.
- W2948427265 hasAuthorship W2948427265A5033305738 @default.
- W2948427265 hasAuthorship W2948427265A5050949041 @default.
- W2948427265 hasAuthorship W2948427265A5087387437 @default.
- W2948427265 hasConcept C114614502 @default.
- W2948427265 hasConcept C119857082 @default.
- W2948427265 hasConcept C124101348 @default.
- W2948427265 hasConcept C126322002 @default.
- W2948427265 hasConcept C154945302 @default.
- W2948427265 hasConcept C167085575 @default.
- W2948427265 hasConcept C2780150128 @default.
- W2948427265 hasConcept C2908647359 @default.
- W2948427265 hasConcept C33923547 @default.
- W2948427265 hasConcept C41008148 @default.
- W2948427265 hasConcept C50644808 @default.
- W2948427265 hasConcept C71924100 @default.
- W2948427265 hasConcept C74193536 @default.
- W2948427265 hasConcept C84393581 @default.
- W2948427265 hasConcept C99454951 @default.
- W2948427265 hasConceptScore W2948427265C114614502 @default.
- W2948427265 hasConceptScore W2948427265C119857082 @default.
- W2948427265 hasConceptScore W2948427265C124101348 @default.
- W2948427265 hasConceptScore W2948427265C126322002 @default.
- W2948427265 hasConceptScore W2948427265C154945302 @default.
- W2948427265 hasConceptScore W2948427265C167085575 @default.
- W2948427265 hasConceptScore W2948427265C2780150128 @default.
- W2948427265 hasConceptScore W2948427265C2908647359 @default.
- W2948427265 hasConceptScore W2948427265C33923547 @default.
- W2948427265 hasConceptScore W2948427265C41008148 @default.
- W2948427265 hasConceptScore W2948427265C50644808 @default.
- W2948427265 hasConceptScore W2948427265C71924100 @default.
- W2948427265 hasConceptScore W2948427265C74193536 @default.
- W2948427265 hasConceptScore W2948427265C84393581 @default.
- W2948427265 hasConceptScore W2948427265C99454951 @default.
- W2948427265 hasLocation W29484272651 @default.
- W2948427265 hasOpenAccess W2948427265 @default.
- W2948427265 hasPrimaryLocation W29484272651 @default.
- W2948427265 hasRelatedWork W2051854463 @default.
- W2948427265 hasRelatedWork W2295628041 @default.
- W2948427265 hasRelatedWork W2475251269 @default.
- W2948427265 hasRelatedWork W2890938630 @default.
- W2948427265 hasRelatedWork W2905251838 @default.
- W2948427265 hasRelatedWork W2945765785 @default.
- W2948427265 hasRelatedWork W2967702252 @default.
- W2948427265 hasRelatedWork W2969890106 @default.
- W2948427265 hasRelatedWork W3134233996 @default.
- W2948427265 hasRelatedWork W4200608505 @default.
- W2948427265 isParatext "false" @default.
- W2948427265 isRetracted "false" @default.
- W2948427265 magId "2948427265" @default.
- W2948427265 workType "book-chapter" @default.