Matches in SemOpenAlex for { <https://semopenalex.org/work/W2948452024> ?p ?o ?g. }
- W2948452024 abstract "A bstract Among virtual screening methods that have been developed to facilitate the drug discovery process, chemogenomics presents the particularity to tackle the question of predicting ligands for proteins, at at scales both in the protein and chemical spaces. Therefore, in addition to to predict drug candidates for a given therapeutic protein target, like more classical ligand-based or receptor-based methods do, chemogenomics can also predict off-targets at the proteome level, and therefore, identify potential side-effects or drug repositioning opportunities. In this study, we study and compare machine-learning and deep learning approaches for chemogenomics, that are applicable to screen large sets of compounds against large sets of druggable proteins. State-of-the-art drug chemogenomics methods rely on expert-based chemical and protein descriptors or similarity measures. The recent development of deep learning approaches enabled to design algorithms that learn numerical abstract representations of molecular graphs and protein sequences in an end-to-end fashion, i.e., so that the learnt features optimise the objective function of the drug-target interaction prediction task. In this paper, we address drug-target interaction prediction at the druggable proteome-level, with what we define as the chemogenomic neuron network. This network consists of a feed-forward neuron network taking as input the combination of molecular and protein representations learnt by molecular graph and protein sequence encoders. We first propose a standard formulation of this chemogenomic neuron network. Then, we compare the performances of the standard chemogenomic network to reference deep learning or shallow (machine-learning without deep learning) methods. In particular, we show that such a representation learning approach is competitive with state-of-the-art chemogenomics with shallow methods, but not ultimately superior. We evaluate the most promising neuron network architectures and data augmentation techniques, such as multi-view and transfer learning, to improve the prediction performance of the chemogenomic network. Our results shed new insights on the design of chemogenomics approaches based on representation learning algorithms. Most importantly, we conclude from our observations that a promising research direction is to integrate heterogeneous sources of data such as various bioactivity datasets, or independently, multiple molecule and protein attribute views, instead of focusing on sophisticated, yet intuitively relevant, encoder’s neuron network architecture." @default.
- W2948452024 created "2019-06-14" @default.
- W2948452024 creator A5041266189 @default.
- W2948452024 creator A5062646793 @default.
- W2948452024 date "2019-06-06" @default.
- W2948452024 modified "2023-09-27" @default.
- W2948452024 title "Evaluation of network architecture and data augmentation methods for deep learning in chemogenomics" @default.
- W2948452024 cites W109016873 @default.
- W2948452024 cites W1501856433 @default.
- W2948452024 cites W1601495365 @default.
- W2948452024 cites W1864564002 @default.
- W2948452024 cites W1964655247 @default.
- W2948452024 cites W1966849089 @default.
- W2948452024 cites W1975147762 @default.
- W2948452024 cites W1984014392 @default.
- W2948452024 cites W1988909822 @default.
- W2948452024 cites W1995089537 @default.
- W2948452024 cites W1998767819 @default.
- W2948452024 cites W2003635842 @default.
- W2948452024 cites W2017254234 @default.
- W2948452024 cites W2019488416 @default.
- W2948452024 cites W2029348196 @default.
- W2948452024 cites W2033591223 @default.
- W2948452024 cites W2046589863 @default.
- W2948452024 cites W2066201825 @default.
- W2948452024 cites W2081050523 @default.
- W2948452024 cites W2093117046 @default.
- W2948452024 cites W2096541451 @default.
- W2948452024 cites W2100672820 @default.
- W2948452024 cites W2106029302 @default.
- W2948452024 cites W2109991441 @default.
- W2948452024 cites W2116341502 @default.
- W2948452024 cites W2117030594 @default.
- W2948452024 cites W2118581990 @default.
- W2948452024 cites W2119512897 @default.
- W2948452024 cites W2121950477 @default.
- W2948452024 cites W2126486632 @default.
- W2948452024 cites W2127249498 @default.
- W2948452024 cites W2135007932 @default.
- W2948452024 cites W2137084389 @default.
- W2948452024 cites W2137262074 @default.
- W2948452024 cites W2139516171 @default.
- W2948452024 cites W2139736926 @default.
- W2948452024 cites W2153838454 @default.
- W2948452024 cites W2155894387 @default.
- W2948452024 cites W2157825442 @default.
- W2948452024 cites W2158714788 @default.
- W2948452024 cites W2161607603 @default.
- W2948452024 cites W2170146596 @default.
- W2948452024 cites W2171464043 @default.
- W2948452024 cites W2256553158 @default.
- W2948452024 cites W2419892062 @default.
- W2948452024 cites W2565684601 @default.
- W2948452024 cites W2594183968 @default.
- W2948452024 cites W2604314403 @default.
- W2948452024 cites W2605952223 @default.
- W2948452024 cites W2611386757 @default.
- W2948452024 cites W2735246657 @default.
- W2948452024 cites W2749122933 @default.
- W2948452024 cites W2751756351 @default.
- W2948452024 cites W2766761250 @default.
- W2948452024 cites W2768818196 @default.
- W2948452024 cites W2785947426 @default.
- W2948452024 cites W2792455800 @default.
- W2948452024 cites W2799644139 @default.
- W2948452024 cites W2802419764 @default.
- W2948452024 cites W2860192827 @default.
- W2948452024 cites W2902800472 @default.
- W2948452024 cites W2911612351 @default.
- W2948452024 cites W2918239264 @default.
- W2948452024 cites W2963280944 @default.
- W2948452024 cites W4256395558 @default.
- W2948452024 cites W2009386937 @default.
- W2948452024 doi "https://doi.org/10.1101/662098" @default.
- W2948452024 hasPublicationYear "2019" @default.
- W2948452024 type Work @default.
- W2948452024 sameAs 2948452024 @default.
- W2948452024 citedByCount "3" @default.
- W2948452024 countsByYear W29484520242021 @default.
- W2948452024 countsByYear W29484520242022 @default.
- W2948452024 countsByYear W29484520242023 @default.
- W2948452024 crossrefType "posted-content" @default.
- W2948452024 hasAuthorship W2948452024A5041266189 @default.
- W2948452024 hasAuthorship W2948452024A5062646793 @default.
- W2948452024 hasBestOaLocation W29484520241 @default.
- W2948452024 hasConcept C104317684 @default.
- W2948452024 hasConcept C104397665 @default.
- W2948452024 hasConcept C10679952 @default.
- W2948452024 hasConcept C108583219 @default.
- W2948452024 hasConcept C119857082 @default.
- W2948452024 hasConcept C154945302 @default.
- W2948452024 hasConcept C41008148 @default.
- W2948452024 hasConcept C55493867 @default.
- W2948452024 hasConcept C60644358 @default.
- W2948452024 hasConcept C74187038 @default.
- W2948452024 hasConcept C86803240 @default.
- W2948452024 hasConceptScore W2948452024C104317684 @default.
- W2948452024 hasConceptScore W2948452024C104397665 @default.
- W2948452024 hasConceptScore W2948452024C10679952 @default.
- W2948452024 hasConceptScore W2948452024C108583219 @default.