Matches in SemOpenAlex for { <https://semopenalex.org/work/W2948457877> ?p ?o ?g. }
- W2948457877 abstract "The increasing digitalization in the field of psychological and educational testing opens up new opportunities to innovate assessments in many respects (e.g., new item formats, flexible test assembly, efficient data handling). In particular, computerized adaptive testing provides the opportunity to make tests more individualized and more efficient. The newly developed continuous calibration strategy (CCS) from Fink, Born, Spoden, and Frey (2018) makes it possible to construct computerized adaptive tests in application areas where separate calibration studies are not feasible. Due to the goal of reporting on a common metric across test cycles, the equating is crucial for the CCS. The quality of the equating depends on the common items selected and the scale transformation method applied. Given the novelty of the CCS, the aim of the study was to evaluate different equating setups in the CCS and to derive practical recommendations. The impact of different equating setups on the precision of item parameter estimates and on the quality of the equating was examined in a Monte Carlo simulation, based on a fully crossed design with the factors common item difficulty distribution (bimodal, normal, uniform), scale transformation method (mean/mean, mean/sigma, Haebara, Stocking-Lord), and sample size per test cycle (50, 100, 300). The quality of the equating was operationalized by three criteria (proportion of feasible equatings, proportion of drifted items, and error of transformation constants). The precision of the item parameter estimates increased with increasing sample size per test cycle, but no substantial difference was found with respect to the common item difficulty distribution and the scale transformation method. With regard to the feasibility of the equatings, no differences were found for the different scale transformation methods. However, when using the moment methods (mean/mean, mean/sigma), quite extrem levels of error for the transformation constants A and B occurred. Among the characteristic curve method the performance of the Stocking-Lord method was slightly better than for the Haebara method. Thus, while no clear recommendation can be made with regard to the common item difficulty distribution, the characteristic curve methods turned out to be the most favorable scale transformation methods within the CCS." @default.
- W2948457877 created "2019-06-14" @default.
- W2948457877 creator A5006656079 @default.
- W2948457877 creator A5008296311 @default.
- W2948457877 creator A5057663670 @default.
- W2948457877 creator A5091473159 @default.
- W2948457877 date "2019-06-06" @default.
- W2948457877 modified "2023-10-06" @default.
- W2948457877 title "Evaluating Different Equating Setups in the Continuous Item Pool Calibration for Computerized Adaptive Testing" @default.
- W2948457877 cites W1919216659 @default.
- W2948457877 cites W1921762067 @default.
- W2948457877 cites W1963784071 @default.
- W2948457877 cites W1974746759 @default.
- W2948457877 cites W1976118401 @default.
- W2948457877 cites W1979490202 @default.
- W2948457877 cites W1981354818 @default.
- W2948457877 cites W1996788630 @default.
- W2948457877 cites W1997849495 @default.
- W2948457877 cites W2009194444 @default.
- W2948457877 cites W2017966270 @default.
- W2948457877 cites W2064196853 @default.
- W2948457877 cites W2065737293 @default.
- W2948457877 cites W2067228482 @default.
- W2948457877 cites W2070673350 @default.
- W2948457877 cites W2113891867 @default.
- W2948457877 cites W2119006887 @default.
- W2948457877 cites W2120178518 @default.
- W2948457877 cites W2123095747 @default.
- W2948457877 cites W2135972812 @default.
- W2948457877 cites W2171336419 @default.
- W2948457877 cites W217858425 @default.
- W2948457877 cites W2208186847 @default.
- W2948457877 cites W2342168173 @default.
- W2948457877 cites W2496131605 @default.
- W2948457877 cites W2502175408 @default.
- W2948457877 cites W2524380279 @default.
- W2948457877 cites W2741387466 @default.
- W2948457877 cites W2801564169 @default.
- W2948457877 cites W2894651608 @default.
- W2948457877 cites W4256326843 @default.
- W2948457877 doi "https://doi.org/10.3389/fpsyg.2019.01277" @default.
- W2948457877 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6563622" @default.
- W2948457877 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31244717" @default.
- W2948457877 hasPublicationYear "2019" @default.
- W2948457877 type Work @default.
- W2948457877 sameAs 2948457877 @default.
- W2948457877 citedByCount "6" @default.
- W2948457877 countsByYear W29484578772020 @default.
- W2948457877 countsByYear W29484578772021 @default.
- W2948457877 countsByYear W29484578772022 @default.
- W2948457877 crossrefType "journal-article" @default.
- W2948457877 hasAuthorship W2948457877A5006656079 @default.
- W2948457877 hasAuthorship W2948457877A5008296311 @default.
- W2948457877 hasAuthorship W2948457877A5057663670 @default.
- W2948457877 hasAuthorship W2948457877A5091473159 @default.
- W2948457877 hasBestOaLocation W29484578771 @default.
- W2948457877 hasConcept C101266164 @default.
- W2948457877 hasConcept C104317684 @default.
- W2948457877 hasConcept C105795698 @default.
- W2948457877 hasConcept C106347477 @default.
- W2948457877 hasConcept C111472728 @default.
- W2948457877 hasConcept C121332964 @default.
- W2948457877 hasConcept C127413603 @default.
- W2948457877 hasConcept C129848803 @default.
- W2948457877 hasConcept C138885662 @default.
- W2948457877 hasConcept C144352353 @default.
- W2948457877 hasConcept C149782125 @default.
- W2948457877 hasConcept C165838908 @default.
- W2948457877 hasConcept C171606756 @default.
- W2948457877 hasConcept C176217482 @default.
- W2948457877 hasConcept C185592680 @default.
- W2948457877 hasConcept C19499675 @default.
- W2948457877 hasConcept C198531522 @default.
- W2948457877 hasConcept C19875794 @default.
- W2948457877 hasConcept C204241405 @default.
- W2948457877 hasConcept C21547014 @default.
- W2948457877 hasConcept C2778755073 @default.
- W2948457877 hasConcept C2779530757 @default.
- W2948457877 hasConcept C33923547 @default.
- W2948457877 hasConcept C40696583 @default.
- W2948457877 hasConcept C41008148 @default.
- W2948457877 hasConcept C43617362 @default.
- W2948457877 hasConcept C55493867 @default.
- W2948457877 hasConcept C62520636 @default.
- W2948457877 hasConcept C9354725 @default.
- W2948457877 hasConceptScore W2948457877C101266164 @default.
- W2948457877 hasConceptScore W2948457877C104317684 @default.
- W2948457877 hasConceptScore W2948457877C105795698 @default.
- W2948457877 hasConceptScore W2948457877C106347477 @default.
- W2948457877 hasConceptScore W2948457877C111472728 @default.
- W2948457877 hasConceptScore W2948457877C121332964 @default.
- W2948457877 hasConceptScore W2948457877C127413603 @default.
- W2948457877 hasConceptScore W2948457877C129848803 @default.
- W2948457877 hasConceptScore W2948457877C138885662 @default.
- W2948457877 hasConceptScore W2948457877C144352353 @default.
- W2948457877 hasConceptScore W2948457877C149782125 @default.
- W2948457877 hasConceptScore W2948457877C165838908 @default.
- W2948457877 hasConceptScore W2948457877C171606756 @default.
- W2948457877 hasConceptScore W2948457877C176217482 @default.
- W2948457877 hasConceptScore W2948457877C185592680 @default.