Matches in SemOpenAlex for { <https://semopenalex.org/work/W2948468323> ?p ?o ?g. }
Showing items 1 to 64 of
64
with 100 items per page.
- W2948468323 abstract "An Enterprise System Bus (ESB) is a software which is used to communicate between various mutually interacting software applications in manufacturing plants. ESB performance is very important for the smooth functioning of the system. Any degradation or failure of the ESB results in huge revenue loss due to production discontinuity. Therefore, maintaining ESB in a healthy state is very essential and there are multiple factors related to resource utilization, workload and number of interfaces etc., which influences the performance of the ESB. Forecasting these variables at least a day ahead (24 h ahead) is required to take appropriate actions by the business team to maintain the ESB performance under control. But, these variables are heterogeneous (continuous, discrete and percentages) in nature, highly non-linear and non-stationary. The challenges associated with forecasting of these variables are (i) long horizon (24 h ahead forecast at 5 min granularity requires to forecast 288 steps) (ii) data generated from these kinds of systems makes it very difficult to use any linear statistical methods like state-space models, ARIMA etc. To address these challenges, the paper presents a framework where a basket of learning algorithms based on Artificial Neural Network (ANN), Support Vector Regression (SVR) and Random Forests (RF) were used to model the chaotic behavior of the time series with a real-time automatic algorithm selection mechanism which enables appropriate forecasting algorithm to be chosen dynamically based on the performance over a time window, resulting in different algorithms being used for forecasting the same target variable on different days. Importance of the proposed strategy was demonstrated with suitable forecasting results for different variables/parameters impacting the performance of the critical Enterprise System Bus of an automotive manufacturing setup." @default.
- W2948468323 created "2019-06-14" @default.
- W2948468323 creator A5000862421 @default.
- W2948468323 creator A5035666448 @default.
- W2948468323 creator A5086693444 @default.
- W2948468323 creator A5087568042 @default.
- W2948468323 date "2019-01-01" @default.
- W2948468323 modified "2023-10-18" @default.
- W2948468323 title "Long-Term Forecasting of Heterogenous Variables with Automatic Algorithm Selection" @default.
- W2948468323 cites W1964357740 @default.
- W2948468323 cites W1982348007 @default.
- W2948468323 cites W2003694399 @default.
- W2948468323 cites W2019881140 @default.
- W2948468323 cites W2034489756 @default.
- W2948468323 cites W2040395995 @default.
- W2948468323 cites W2174096604 @default.
- W2948468323 cites W2564151414 @default.
- W2948468323 cites W2728073923 @default.
- W2948468323 cites W2760894977 @default.
- W2948468323 cites W2798056406 @default.
- W2948468323 cites W2911964244 @default.
- W2948468323 cites W3123760665 @default.
- W2948468323 doi "https://doi.org/10.1007/978-3-030-20521-8_16" @default.
- W2948468323 hasPublicationYear "2019" @default.
- W2948468323 type Work @default.
- W2948468323 sameAs 2948468323 @default.
- W2948468323 citedByCount "1" @default.
- W2948468323 countsByYear W29484683232021 @default.
- W2948468323 crossrefType "book-chapter" @default.
- W2948468323 hasAuthorship W2948468323A5000862421 @default.
- W2948468323 hasAuthorship W2948468323A5035666448 @default.
- W2948468323 hasAuthorship W2948468323A5086693444 @default.
- W2948468323 hasAuthorship W2948468323A5087568042 @default.
- W2948468323 hasConcept C119857082 @default.
- W2948468323 hasConcept C124101348 @default.
- W2948468323 hasConcept C151406439 @default.
- W2948468323 hasConcept C154945302 @default.
- W2948468323 hasConcept C24338571 @default.
- W2948468323 hasConcept C41008148 @default.
- W2948468323 hasConcept C50644808 @default.
- W2948468323 hasConceptScore W2948468323C119857082 @default.
- W2948468323 hasConceptScore W2948468323C124101348 @default.
- W2948468323 hasConceptScore W2948468323C151406439 @default.
- W2948468323 hasConceptScore W2948468323C154945302 @default.
- W2948468323 hasConceptScore W2948468323C24338571 @default.
- W2948468323 hasConceptScore W2948468323C41008148 @default.
- W2948468323 hasConceptScore W2948468323C50644808 @default.
- W2948468323 hasLocation W29484683231 @default.
- W2948468323 hasOpenAccess W2948468323 @default.
- W2948468323 hasPrimaryLocation W29484683231 @default.
- W2948468323 hasRelatedWork W2031518108 @default.
- W2948468323 hasRelatedWork W2036000973 @default.
- W2948468323 hasRelatedWork W2084779923 @default.
- W2948468323 hasRelatedWork W2121393587 @default.
- W2948468323 hasRelatedWork W2145149728 @default.
- W2948468323 hasRelatedWork W2937631562 @default.
- W2948468323 hasRelatedWork W3116240832 @default.
- W2948468323 hasRelatedWork W3136979370 @default.
- W2948468323 hasRelatedWork W3194539120 @default.
- W2948468323 hasRelatedWork W4205958290 @default.
- W2948468323 isParatext "false" @default.
- W2948468323 isRetracted "false" @default.
- W2948468323 magId "2948468323" @default.
- W2948468323 workType "book-chapter" @default.