Matches in SemOpenAlex for { <https://semopenalex.org/work/W2948490939> ?p ?o ?g. }
- W2948490939 endingPage "106135" @default.
- W2948490939 startingPage "106135" @default.
- W2948490939 abstract "Different sources of data are used to construct a reliable model of reservoir for oil/gas production. This model ought to be matched with the production history of reservoir and also show reliable predictions for future performance. To this end, permeability modeling (characterization of heterogeneity) is crucially important which is proved to be done by Multiple Point Statistics (MPS) recently. Furthermore, deep learning methods are massively used as a promising tool for regression applications. In this study, one MPS method is employed for generating the reservoir realizations. Realizations, alongside their simulation outputs, are utilized for training a convolutional deep network. In this manner, MPS is joined with deep learning to find the most appropriate realization(s) of the reservoir based on the fluid flow simulation. Moreover, unseen MPS realizations as well as another MPS realizations are used to verify the selection ability of trained network. The detailed architecture of convolutional network is illustrated in this study. The purpose of training this network and combination with MPS is to generate the matched realization(s) in history period that also show acceptable reservoir behavior in the future times of reservoir simulation. After training, the actual production data of selected realizations are obtained by simulation the reservoir for history and also future times. The results show that selected realizations efficiently capture the trend of reference behavior. Although these realizations lack identical permeability values, they have same texture of permeability (permeability heterogeneity). Meanwhile, they show acceptable match in reservoir simulation outputs. By proposed workflow, the uncertainty of permeability modeling is considered more exhaustively. It is done by selecting the realizations from enormous possible realizations dataset and providing a deep learning tool which is capable for screening quite large number of realizations. Interesting finding is satisfactory behavior of realization(s) in both history and future periods of reservoir performance." @default.
- W2948490939 created "2019-06-14" @default.
- W2948490939 creator A5007563481 @default.
- W2948490939 creator A5014356475 @default.
- W2948490939 creator A5020858240 @default.
- W2948490939 creator A5036118152 @default.
- W2948490939 creator A5045610176 @default.
- W2948490939 date "2019-10-01" @default.
- W2948490939 modified "2023-10-18" @default.
- W2948490939 title "Toward more realistic models of reservoir by cutting-edge characterization of permeability with MPS methods and deep-learning-based selection" @default.
- W2948490939 cites W1499512010 @default.
- W2948490939 cites W1537810918 @default.
- W2948490939 cites W1821143250 @default.
- W2948490939 cites W1982043825 @default.
- W2948490939 cites W2037364111 @default.
- W2948490939 cites W2053329537 @default.
- W2948490939 cites W2065385548 @default.
- W2948490939 cites W2069201990 @default.
- W2948490939 cites W2081919797 @default.
- W2948490939 cites W2083583624 @default.
- W2948490939 cites W2088650351 @default.
- W2948490939 cites W2119794075 @default.
- W2948490939 cites W2130116439 @default.
- W2948490939 cites W2148903074 @default.
- W2948490939 cites W2168594645 @default.
- W2948490939 cites W2218047931 @default.
- W2948490939 cites W2225318051 @default.
- W2948490939 cites W2235297329 @default.
- W2948490939 cites W2301201247 @default.
- W2948490939 cites W2328408066 @default.
- W2948490939 cites W240582380 @default.
- W2948490939 cites W2498200701 @default.
- W2948490939 cites W2567794973 @default.
- W2948490939 cites W2580608549 @default.
- W2948490939 cites W2613635884 @default.
- W2948490939 cites W2620443716 @default.
- W2948490939 cites W2680764049 @default.
- W2948490939 cites W2745723384 @default.
- W2948490939 cites W2772231817 @default.
- W2948490939 cites W2782972996 @default.
- W2948490939 cites W2793363196 @default.
- W2948490939 cites W2810350385 @default.
- W2948490939 cites W2884366190 @default.
- W2948490939 cites W2885702432 @default.
- W2948490939 cites W2886190064 @default.
- W2948490939 cites W2891094646 @default.
- W2948490939 cites W2901691125 @default.
- W2948490939 cites W2902064445 @default.
- W2948490939 cites W2903269036 @default.
- W2948490939 cites W2910673922 @default.
- W2948490939 cites W2914046321 @default.
- W2948490939 cites W4236692733 @default.
- W2948490939 doi "https://doi.org/10.1016/j.petrol.2019.05.086" @default.
- W2948490939 hasPublicationYear "2019" @default.
- W2948490939 type Work @default.
- W2948490939 sameAs 2948490939 @default.
- W2948490939 citedByCount "8" @default.
- W2948490939 countsByYear W29484909392020 @default.
- W2948490939 countsByYear W29484909392022 @default.
- W2948490939 countsByYear W29484909392023 @default.
- W2948490939 crossrefType "journal-article" @default.
- W2948490939 hasAuthorship W2948490939A5007563481 @default.
- W2948490939 hasAuthorship W2948490939A5014356475 @default.
- W2948490939 hasAuthorship W2948490939A5020858240 @default.
- W2948490939 hasAuthorship W2948490939A5036118152 @default.
- W2948490939 hasAuthorship W2948490939A5045610176 @default.
- W2948490939 hasConcept C108583219 @default.
- W2948490939 hasConcept C119857082 @default.
- W2948490939 hasConcept C120882062 @default.
- W2948490939 hasConcept C127413603 @default.
- W2948490939 hasConcept C14641988 @default.
- W2948490939 hasConcept C154945302 @default.
- W2948490939 hasConcept C177212765 @default.
- W2948490939 hasConcept C2778668878 @default.
- W2948490939 hasConcept C41008148 @default.
- W2948490939 hasConcept C41625074 @default.
- W2948490939 hasConcept C54355233 @default.
- W2948490939 hasConcept C77088390 @default.
- W2948490939 hasConcept C78762247 @default.
- W2948490939 hasConcept C81917197 @default.
- W2948490939 hasConcept C86803240 @default.
- W2948490939 hasConceptScore W2948490939C108583219 @default.
- W2948490939 hasConceptScore W2948490939C119857082 @default.
- W2948490939 hasConceptScore W2948490939C120882062 @default.
- W2948490939 hasConceptScore W2948490939C127413603 @default.
- W2948490939 hasConceptScore W2948490939C14641988 @default.
- W2948490939 hasConceptScore W2948490939C154945302 @default.
- W2948490939 hasConceptScore W2948490939C177212765 @default.
- W2948490939 hasConceptScore W2948490939C2778668878 @default.
- W2948490939 hasConceptScore W2948490939C41008148 @default.
- W2948490939 hasConceptScore W2948490939C41625074 @default.
- W2948490939 hasConceptScore W2948490939C54355233 @default.
- W2948490939 hasConceptScore W2948490939C77088390 @default.
- W2948490939 hasConceptScore W2948490939C78762247 @default.
- W2948490939 hasConceptScore W2948490939C81917197 @default.
- W2948490939 hasConceptScore W2948490939C86803240 @default.
- W2948490939 hasLocation W29484909391 @default.
- W2948490939 hasOpenAccess W2948490939 @default.