Matches in SemOpenAlex for { <https://semopenalex.org/work/W2948500068> ?p ?o ?g. }
- W2948500068 endingPage "187" @default.
- W2948500068 startingPage "181" @default.
- W2948500068 abstract "Abstract. The occurrence of urban flooding following strong rainfall events may increase as a result of climate change. Urban expansion, aging infrastructure and an increasing number of impervious surfaces are further exacerbating flooding. To increase resilience and support flood mitigation, bespoke accurate flood modelling and reliable prediction is required. However, flooding in urban areas is most challenging. State-of-the-art flood inundation modelling is still often based on relatively low-resolution 2.5 D bare earth models with 2–5 m GSD. Current systems suffer from a lack of precise input data and numerical instabilities and lack of other important data, such as drainage networks. Especially, the quality and resolution of the topographic input data represents a major source of uncertainty in urban flood modelling. A benchmark study is needed that defines the accuracy requirements for highly detailed urban flood modelling and to improve our understanding of important threshold processes and limitations of current methods and 3D mapping data alike.This paper presents the first steps in establishing a new, innovative multiscale data set suitable to benchmark urban flood modelling. The final data set will consist of high-resolution 3D mapping data acquired from different airborne platforms, focusing on the use of drones (optical and LiDAR). The case study includes residential as well as rural areas in Dudelange/Luxembourg, which have been prone to localized flash flooding following strong rainfall events in recent years. The project also represents a cross disciplinary collaboration between the geospatial and flood modelling community. In this paper, we introduce the first steps to build up a new benchmark data set together with some initial flood modelling results. More detailed investigations will follow in the next phases of this project." @default.
- W2948500068 created "2019-06-14" @default.
- W2948500068 creator A5008976377 @default.
- W2948500068 creator A5041864932 @default.
- W2948500068 creator A5048341966 @default.
- W2948500068 creator A5053120967 @default.
- W2948500068 date "2019-06-04" @default.
- W2948500068 modified "2023-10-17" @default.
- W2948500068 title "TOWARDS A HIGH-RESOLUTION DRONE-BASED 3D MAPPING DATASET TO OPTIMISE FLOOD HAZARD MODELLING" @default.
- W2948500068 cites W1568502208 @default.
- W2948500068 cites W1604958445 @default.
- W2948500068 cites W2022760210 @default.
- W2948500068 cites W2055668893 @default.
- W2948500068 cites W2069290377 @default.
- W2948500068 cites W2090020933 @default.
- W2948500068 cites W2098430501 @default.
- W2948500068 cites W2098851881 @default.
- W2948500068 cites W2101661671 @default.
- W2948500068 cites W2111456289 @default.
- W2948500068 cites W2116726146 @default.
- W2948500068 cites W2138784324 @default.
- W2948500068 cites W2163952144 @default.
- W2948500068 cites W2173814343 @default.
- W2948500068 cites W2346877152 @default.
- W2948500068 cites W2756863634 @default.
- W2948500068 cites W2800874035 @default.
- W2948500068 doi "https://doi.org/10.5194/isprs-archives-xlii-2-w13-181-2019" @default.
- W2948500068 hasPublicationYear "2019" @default.
- W2948500068 type Work @default.
- W2948500068 sameAs 2948500068 @default.
- W2948500068 citedByCount "15" @default.
- W2948500068 countsByYear W29485000682019 @default.
- W2948500068 countsByYear W29485000682020 @default.
- W2948500068 countsByYear W29485000682021 @default.
- W2948500068 countsByYear W29485000682022 @default.
- W2948500068 countsByYear W29485000682023 @default.
- W2948500068 crossrefType "journal-article" @default.
- W2948500068 hasAuthorship W2948500068A5008976377 @default.
- W2948500068 hasAuthorship W2948500068A5041864932 @default.
- W2948500068 hasAuthorship W2948500068A5048341966 @default.
- W2948500068 hasAuthorship W2948500068A5053120967 @default.
- W2948500068 hasBestOaLocation W29485000681 @default.
- W2948500068 hasConcept C120417685 @default.
- W2948500068 hasConcept C121332964 @default.
- W2948500068 hasConcept C15744967 @default.
- W2948500068 hasConcept C166957645 @default.
- W2948500068 hasConcept C186594467 @default.
- W2948500068 hasConcept C18903297 @default.
- W2948500068 hasConcept C205649164 @default.
- W2948500068 hasConcept C2668921 @default.
- W2948500068 hasConcept C2779585090 @default.
- W2948500068 hasConcept C39432304 @default.
- W2948500068 hasConcept C41008148 @default.
- W2948500068 hasConcept C51399673 @default.
- W2948500068 hasConcept C542102704 @default.
- W2948500068 hasConcept C54355233 @default.
- W2948500068 hasConcept C59519942 @default.
- W2948500068 hasConcept C62649853 @default.
- W2948500068 hasConcept C74256435 @default.
- W2948500068 hasConcept C86803240 @default.
- W2948500068 hasConcept C97355855 @default.
- W2948500068 hasConcept C9770341 @default.
- W2948500068 hasConceptScore W2948500068C120417685 @default.
- W2948500068 hasConceptScore W2948500068C121332964 @default.
- W2948500068 hasConceptScore W2948500068C15744967 @default.
- W2948500068 hasConceptScore W2948500068C166957645 @default.
- W2948500068 hasConceptScore W2948500068C186594467 @default.
- W2948500068 hasConceptScore W2948500068C18903297 @default.
- W2948500068 hasConceptScore W2948500068C205649164 @default.
- W2948500068 hasConceptScore W2948500068C2668921 @default.
- W2948500068 hasConceptScore W2948500068C2779585090 @default.
- W2948500068 hasConceptScore W2948500068C39432304 @default.
- W2948500068 hasConceptScore W2948500068C41008148 @default.
- W2948500068 hasConceptScore W2948500068C51399673 @default.
- W2948500068 hasConceptScore W2948500068C542102704 @default.
- W2948500068 hasConceptScore W2948500068C54355233 @default.
- W2948500068 hasConceptScore W2948500068C59519942 @default.
- W2948500068 hasConceptScore W2948500068C62649853 @default.
- W2948500068 hasConceptScore W2948500068C74256435 @default.
- W2948500068 hasConceptScore W2948500068C86803240 @default.
- W2948500068 hasConceptScore W2948500068C97355855 @default.
- W2948500068 hasConceptScore W2948500068C9770341 @default.
- W2948500068 hasLocation W29485000681 @default.
- W2948500068 hasLocation W29485000682 @default.
- W2948500068 hasLocation W29485000683 @default.
- W2948500068 hasLocation W29485000684 @default.
- W2948500068 hasLocation W29485000685 @default.
- W2948500068 hasLocation W29485000686 @default.
- W2948500068 hasOpenAccess W2948500068 @default.
- W2948500068 hasPrimaryLocation W29485000681 @default.
- W2948500068 hasRelatedWork W134708111 @default.
- W2948500068 hasRelatedWork W1799107148 @default.
- W2948500068 hasRelatedWork W1975239068 @default.
- W2948500068 hasRelatedWork W2326319631 @default.
- W2948500068 hasRelatedWork W2973204631 @default.
- W2948500068 hasRelatedWork W3122486387 @default.
- W2948500068 hasRelatedWork W3217802839 @default.
- W2948500068 hasRelatedWork W4286560687 @default.