Matches in SemOpenAlex for { <https://semopenalex.org/work/W2948546740> ?p ?o ?g. }
- W2948546740 endingPage "74908" @default.
- W2948546740 startingPage "74899" @default.
- W2948546740 abstract "A method to determine the presence of hard X-ray emission processes from a dense plasma focus (205 J, 22 kV, 6.5 mbar H2) using Ultra High Frequency (UHF) measurements and deep learning techniques is presented. Simultaneously, the electromagnetic UHF radiation emitted from the plasma focus was measured with a Vivaldi UHF antenna, while the hard X-ray emission was measured with a scintillator-photomultiplier system. A classification algorithm based on deep learning methods, using two-dimensional convolutional layers, was implemented to predict the hard X-ray signal standard deviation value using only the antenna signal measurement. Two independent datasets, consisting of 999 and 1761 data pairs each, were used in the analysis. Different realizations of the training/validation process using a deep learning model, obtained overall better results in comparison to other machine learning methods like k-neighbors, decision trees, gradient boost, and random forest. The results of the deep learning algorithm, and even its comparison with other machine learning methods, indicate that a relationship between the electromagnetic UHF radiation and hard X-ray emission can be established, enabling the indirect detection of hard X-ray pulses only using the UHF antenna signal. This indirect detection presents the opportunity to have a simple and low-cost diagnostic, compared to the methods currently used to characterize the pulses of X-rays emitted from plasma focus discharges." @default.
- W2948546740 created "2019-06-14" @default.
- W2948546740 creator A5009958523 @default.
- W2948546740 creator A5010055401 @default.
- W2948546740 creator A5015805203 @default.
- W2948546740 creator A5020216899 @default.
- W2948546740 creator A5034202142 @default.
- W2948546740 creator A5053921091 @default.
- W2948546740 creator A5058994874 @default.
- W2948546740 date "2019-01-01" @default.
- W2948546740 modified "2023-10-18" @default.
- W2948546740 title "Hard X-Ray Emission Detection Using Deep Learning Analysis of the Radiated UHF Electromagnetic Signal From a Plasma Focus Discharge" @default.
- W2948546740 cites W1979467015 @default.
- W2948546740 cites W1994111114 @default.
- W2948546740 cites W1996773531 @default.
- W2948546740 cites W2000334481 @default.
- W2948546740 cites W2002259383 @default.
- W2948546740 cites W2009907819 @default.
- W2948546740 cites W2010203870 @default.
- W2948546740 cites W2030777054 @default.
- W2948546740 cites W2038030577 @default.
- W2948546740 cites W2038117488 @default.
- W2948546740 cites W2045052268 @default.
- W2948546740 cites W2050303267 @default.
- W2948546740 cites W2063266445 @default.
- W2948546740 cites W2070813937 @default.
- W2948546740 cites W2073545231 @default.
- W2948546740 cites W2085483552 @default.
- W2948546740 cites W2085934699 @default.
- W2948546740 cites W2096072511 @default.
- W2948546740 cites W2096522433 @default.
- W2948546740 cites W2100267831 @default.
- W2948546740 cites W2104624645 @default.
- W2948546740 cites W2106205901 @default.
- W2948546740 cites W2141597732 @default.
- W2948546740 cites W2170505850 @default.
- W2948546740 cites W2213951495 @default.
- W2948546740 cites W2240177522 @default.
- W2948546740 cites W2257979135 @default.
- W2948546740 cites W2315947295 @default.
- W2948546740 cites W2321457061 @default.
- W2948546740 cites W2736873302 @default.
- W2948546740 cites W2740861465 @default.
- W2948546740 cites W2751129713 @default.
- W2948546740 cites W2756227942 @default.
- W2948546740 cites W2765604559 @default.
- W2948546740 cites W2766447205 @default.
- W2948546740 cites W2793962505 @default.
- W2948546740 cites W2809750215 @default.
- W2948546740 cites W286444708 @default.
- W2948546740 cites W2884001105 @default.
- W2948546740 cites W2919115771 @default.
- W2948546740 cites W2937394206 @default.
- W2948546740 cites W3101378854 @default.
- W2948546740 doi "https://doi.org/10.1109/access.2019.2921288" @default.
- W2948546740 hasPublicationYear "2019" @default.
- W2948546740 type Work @default.
- W2948546740 sameAs 2948546740 @default.
- W2948546740 citedByCount "11" @default.
- W2948546740 countsByYear W29485467402019 @default.
- W2948546740 countsByYear W29485467402020 @default.
- W2948546740 countsByYear W29485467402021 @default.
- W2948546740 countsByYear W29485467402022 @default.
- W2948546740 countsByYear W29485467402023 @default.
- W2948546740 crossrefType "journal-article" @default.
- W2948546740 hasAuthorship W2948546740A5009958523 @default.
- W2948546740 hasAuthorship W2948546740A5010055401 @default.
- W2948546740 hasAuthorship W2948546740A5015805203 @default.
- W2948546740 hasAuthorship W2948546740A5020216899 @default.
- W2948546740 hasAuthorship W2948546740A5034202142 @default.
- W2948546740 hasAuthorship W2948546740A5053921091 @default.
- W2948546740 hasAuthorship W2948546740A5058994874 @default.
- W2948546740 hasBestOaLocation W29485467401 @default.
- W2948546740 hasConcept C113879476 @default.
- W2948546740 hasConcept C120665830 @default.
- W2948546740 hasConcept C121332964 @default.
- W2948546740 hasConcept C154945302 @default.
- W2948546740 hasConcept C185544564 @default.
- W2948546740 hasConcept C192209626 @default.
- W2948546740 hasConcept C199360897 @default.
- W2948546740 hasConcept C21822782 @default.
- W2948546740 hasConcept C2779843651 @default.
- W2948546740 hasConcept C41008148 @default.
- W2948546740 hasConcept C69786480 @default.
- W2948546740 hasConcept C76155785 @default.
- W2948546740 hasConcept C82706917 @default.
- W2948546740 hasConcept C94915269 @default.
- W2948546740 hasConcept C96122199 @default.
- W2948546740 hasConceptScore W2948546740C113879476 @default.
- W2948546740 hasConceptScore W2948546740C120665830 @default.
- W2948546740 hasConceptScore W2948546740C121332964 @default.
- W2948546740 hasConceptScore W2948546740C154945302 @default.
- W2948546740 hasConceptScore W2948546740C185544564 @default.
- W2948546740 hasConceptScore W2948546740C192209626 @default.
- W2948546740 hasConceptScore W2948546740C199360897 @default.
- W2948546740 hasConceptScore W2948546740C21822782 @default.
- W2948546740 hasConceptScore W2948546740C2779843651 @default.
- W2948546740 hasConceptScore W2948546740C41008148 @default.