Matches in SemOpenAlex for { <https://semopenalex.org/work/W2948730696> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W2948730696 abstract "An increasing number of power transformers operating in the developed countries do not have OEM technical support. There is an urgent need to obtain transformer design information such as winding types through interpretation of measured FRA data. Winding types may be manifested as different features in FRA traces within specific frequency ranges. The objective of this paper is to identify the winding type via FRA measurement data in order to help manage transformer assets. Support Vector Machines (SVM) are supervised learning models for classification analysis in machine learning. Given a set of training FRA examples with known winding categories, an SVM algorithm is built to assign new FRA traces to a most possible winding category. A group of 400/275 kV transformers are tested in this study with excellent classification results of winding types, indicating a promising “digital twin” technological approach to transformer asset management." @default.
- W2948730696 created "2019-06-14" @default.
- W2948730696 creator A5001115381 @default.
- W2948730696 creator A5034728894 @default.
- W2948730696 creator A5045923616 @default.
- W2948730696 creator A5073095416 @default.
- W2948730696 date "2019-04-01" @default.
- W2948730696 modified "2023-10-11" @default.
- W2948730696 title "Winding Type Recognition through Supervised Machine Learning using Frequency Response Analysis (FRA) Data" @default.
- W2948730696 cites W2008056655 @default.
- W2948730696 cites W2095860238 @default.
- W2948730696 cites W2109766135 @default.
- W2948730696 cites W2129222529 @default.
- W2948730696 cites W2898839845 @default.
- W2948730696 doi "https://doi.org/10.1109/icempe.2019.8727354" @default.
- W2948730696 hasPublicationYear "2019" @default.
- W2948730696 type Work @default.
- W2948730696 sameAs 2948730696 @default.
- W2948730696 citedByCount "6" @default.
- W2948730696 countsByYear W29487306962019 @default.
- W2948730696 countsByYear W29487306962021 @default.
- W2948730696 countsByYear W29487306962022 @default.
- W2948730696 countsByYear W29487306962023 @default.
- W2948730696 crossrefType "proceedings-article" @default.
- W2948730696 hasAuthorship W2948730696A5001115381 @default.
- W2948730696 hasAuthorship W2948730696A5034728894 @default.
- W2948730696 hasAuthorship W2948730696A5045923616 @default.
- W2948730696 hasAuthorship W2948730696A5073095416 @default.
- W2948730696 hasConcept C119599485 @default.
- W2948730696 hasConcept C119857082 @default.
- W2948730696 hasConcept C12267149 @default.
- W2948730696 hasConcept C127413603 @default.
- W2948730696 hasConcept C153180895 @default.
- W2948730696 hasConcept C154945302 @default.
- W2948730696 hasConcept C165801399 @default.
- W2948730696 hasConcept C30403606 @default.
- W2948730696 hasConcept C41008148 @default.
- W2948730696 hasConcept C66322947 @default.
- W2948730696 hasConceptScore W2948730696C119599485 @default.
- W2948730696 hasConceptScore W2948730696C119857082 @default.
- W2948730696 hasConceptScore W2948730696C12267149 @default.
- W2948730696 hasConceptScore W2948730696C127413603 @default.
- W2948730696 hasConceptScore W2948730696C153180895 @default.
- W2948730696 hasConceptScore W2948730696C154945302 @default.
- W2948730696 hasConceptScore W2948730696C165801399 @default.
- W2948730696 hasConceptScore W2948730696C30403606 @default.
- W2948730696 hasConceptScore W2948730696C41008148 @default.
- W2948730696 hasConceptScore W2948730696C66322947 @default.
- W2948730696 hasLocation W29487306961 @default.
- W2948730696 hasOpenAccess W2948730696 @default.
- W2948730696 hasPrimaryLocation W29487306961 @default.
- W2948730696 hasRelatedWork W2041399278 @default.
- W2948730696 hasRelatedWork W2056016498 @default.
- W2948730696 hasRelatedWork W2136184105 @default.
- W2948730696 hasRelatedWork W2160451891 @default.
- W2948730696 hasRelatedWork W2336974148 @default.
- W2948730696 hasRelatedWork W2937631562 @default.
- W2948730696 hasRelatedWork W3013515612 @default.
- W2948730696 hasRelatedWork W3195168932 @default.
- W2948730696 hasRelatedWork W2187500075 @default.
- W2948730696 hasRelatedWork W2345184372 @default.
- W2948730696 isParatext "false" @default.
- W2948730696 isRetracted "false" @default.
- W2948730696 magId "2948730696" @default.
- W2948730696 workType "article" @default.