Matches in SemOpenAlex for { <https://semopenalex.org/work/W2948753010> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W2948753010 abstract "Dictionary learning, paired with sparse coding, aims at providing sparse data representations, that can be used for multiple tasks such as denoising or inpainting, as well as dimensionality reduction. However, when working with large data sets, the dictionary obtained by applying unstructured dictionary learning methods may be of considerable size, which poses both memory and computational complexity issues. In this article, we show how a previously proposed structured dictionary learning model, HO-SuKro, can be used to obtain more compact and readily-applicable dictionaries when the targeted data is a collection of multiway arrays. We introduce an efficient alternating optimization learning algorithm, describe important implementation details that have a considerable impact on both algorithmic complexity and actual speed, and showcase the proposed algorithm on a hyperspectral image denoising task." @default.
- W2948753010 created "2019-06-14" @default.
- W2948753010 creator A5022088234 @default.
- W2948753010 creator A5041230403 @default.
- W2948753010 creator A5073471976 @default.
- W2948753010 date "2019-09-01" @default.
- W2948753010 modified "2023-09-25" @default.
- W2948753010 title "Learning Tensor-structured Dictionaries with Application to Hyperspectral Image Denoising" @default.
- W2948753010 cites W1765998458 @default.
- W2948753010 cites W1973890885 @default.
- W2948753010 cites W2024165284 @default.
- W2948753010 cites W2059363109 @default.
- W2948753010 cites W2095906131 @default.
- W2948753010 cites W2100556411 @default.
- W2948753010 cites W2103193999 @default.
- W2948753010 cites W2128659236 @default.
- W2948753010 cites W2155124307 @default.
- W2948753010 cites W2163398148 @default.
- W2948753010 cites W2164331045 @default.
- W2948753010 cites W2588061952 @default.
- W2948753010 cites W2592661776 @default.
- W2948753010 cites W2767511704 @default.
- W2948753010 cites W2793218933 @default.
- W2948753010 cites W2962912370 @default.
- W2948753010 cites W2964330822 @default.
- W2948753010 doi "https://doi.org/10.23919/eusipco.2019.8902593" @default.
- W2948753010 hasPublicationYear "2019" @default.
- W2948753010 type Work @default.
- W2948753010 sameAs 2948753010 @default.
- W2948753010 citedByCount "5" @default.
- W2948753010 countsByYear W29487530102020 @default.
- W2948753010 countsByYear W29487530102021 @default.
- W2948753010 countsByYear W29487530102022 @default.
- W2948753010 crossrefType "proceedings-article" @default.
- W2948753010 hasAuthorship W2948753010A5022088234 @default.
- W2948753010 hasAuthorship W2948753010A5041230403 @default.
- W2948753010 hasAuthorship W2948753010A5073471976 @default.
- W2948753010 hasBestOaLocation W29487530102 @default.
- W2948753010 hasConcept C105795698 @default.
- W2948753010 hasConcept C11413529 @default.
- W2948753010 hasConcept C115961682 @default.
- W2948753010 hasConcept C11727466 @default.
- W2948753010 hasConcept C119857082 @default.
- W2948753010 hasConcept C153180895 @default.
- W2948753010 hasConcept C154771677 @default.
- W2948753010 hasConcept C154945302 @default.
- W2948753010 hasConcept C159078339 @default.
- W2948753010 hasConcept C162324750 @default.
- W2948753010 hasConcept C163294075 @default.
- W2948753010 hasConcept C179518139 @default.
- W2948753010 hasConcept C179799912 @default.
- W2948753010 hasConcept C187736073 @default.
- W2948753010 hasConcept C2780451532 @default.
- W2948753010 hasConcept C2988886741 @default.
- W2948753010 hasConcept C33923547 @default.
- W2948753010 hasConcept C41008148 @default.
- W2948753010 hasConcept C70518039 @default.
- W2948753010 hasConcept C77637269 @default.
- W2948753010 hasConceptScore W2948753010C105795698 @default.
- W2948753010 hasConceptScore W2948753010C11413529 @default.
- W2948753010 hasConceptScore W2948753010C115961682 @default.
- W2948753010 hasConceptScore W2948753010C11727466 @default.
- W2948753010 hasConceptScore W2948753010C119857082 @default.
- W2948753010 hasConceptScore W2948753010C153180895 @default.
- W2948753010 hasConceptScore W2948753010C154771677 @default.
- W2948753010 hasConceptScore W2948753010C154945302 @default.
- W2948753010 hasConceptScore W2948753010C159078339 @default.
- W2948753010 hasConceptScore W2948753010C162324750 @default.
- W2948753010 hasConceptScore W2948753010C163294075 @default.
- W2948753010 hasConceptScore W2948753010C179518139 @default.
- W2948753010 hasConceptScore W2948753010C179799912 @default.
- W2948753010 hasConceptScore W2948753010C187736073 @default.
- W2948753010 hasConceptScore W2948753010C2780451532 @default.
- W2948753010 hasConceptScore W2948753010C2988886741 @default.
- W2948753010 hasConceptScore W2948753010C33923547 @default.
- W2948753010 hasConceptScore W2948753010C41008148 @default.
- W2948753010 hasConceptScore W2948753010C70518039 @default.
- W2948753010 hasConceptScore W2948753010C77637269 @default.
- W2948753010 hasLocation W29487530101 @default.
- W2948753010 hasLocation W29487530102 @default.
- W2948753010 hasLocation W29487530103 @default.
- W2948753010 hasLocation W29487530104 @default.
- W2948753010 hasOpenAccess W2948753010 @default.
- W2948753010 hasPrimaryLocation W29487530101 @default.
- W2948753010 hasRelatedWork W1558072243 @default.
- W2948753010 hasRelatedWork W2034957211 @default.
- W2948753010 hasRelatedWork W2157785665 @default.
- W2948753010 hasRelatedWork W2543052009 @default.
- W2948753010 hasRelatedWork W2884878023 @default.
- W2948753010 hasRelatedWork W2910550880 @default.
- W2948753010 hasRelatedWork W2948753010 @default.
- W2948753010 hasRelatedWork W2966312796 @default.
- W2948753010 hasRelatedWork W3002372064 @default.
- W2948753010 hasRelatedWork W4319777824 @default.
- W2948753010 isParatext "false" @default.
- W2948753010 isRetracted "false" @default.
- W2948753010 magId "2948753010" @default.
- W2948753010 workType "article" @default.