Matches in SemOpenAlex for { <https://semopenalex.org/work/W2948774324> ?p ?o ?g. }
- W2948774324 endingPage "3316" @default.
- W2948774324 startingPage "3301" @default.
- W2948774324 abstract "Existing smoke vehicle detection methods are vulnerable to false alarms. To solve this issue, this paper presents two automatic smoke vehicle detection methods based on spatiotemporal bag-of-features (S-BoF) and professional convolutional neural network (P-CNN). In the first method, we propose the S-BoF model to characterize the key regions detected by the visual background extractor (ViBe) algorithm. The S-BoF model contains three groups of features, including color moments on three orthogonal planes (CM-TOP), completed robust local binary pattern on three orthogonal planes (CRLBP-TOP), and histogram of oriented gradient on three orthogonal planes (HOG-TOP). The extracted features are fed to the support vector machine (SVM) and classify the key regions to smoke regions or non-smoke regions to further detect smoke vehicles. In the second method, we propose the P-CNN model to extract more robust and complementary spatiotemporal features by designing three professional models to analyze different kinds of features in the key region sequence on three orthogonal planes. The three professional models, including color CNN (CCNN), texture CNN (TCNN), and gradient CNN (GCNN), are based on three independent CNN128 models with different inputs. The experimental results show that the proposed methods achieve higher detection rates and lower false alarm rates than existing smoke detection methods." @default.
- W2948774324 created "2019-06-14" @default.
- W2948774324 creator A5033741559 @default.
- W2948774324 creator A5066658319 @default.
- W2948774324 date "2020-10-01" @default.
- W2948774324 modified "2023-10-10" @default.
- W2948774324 title "Smoke Vehicle Detection Based on Spatiotemporal Bag-Of-Features and Professional Convolutional Neural Network" @default.
- W2948774324 cites W1842323748 @default.
- W2948774324 cites W1976526581 @default.
- W2948774324 cites W1983364832 @default.
- W2948774324 cites W1997951305 @default.
- W2948774324 cites W2005846441 @default.
- W2948774324 cites W2006186121 @default.
- W2948774324 cites W2011011931 @default.
- W2948774324 cites W2013300501 @default.
- W2948774324 cites W2018229212 @default.
- W2948774324 cites W2020681746 @default.
- W2948774324 cites W2039983430 @default.
- W2948774324 cites W2044281231 @default.
- W2948774324 cites W2050398567 @default.
- W2948774324 cites W2053529786 @default.
- W2948774324 cites W2056230170 @default.
- W2948774324 cites W2073371483 @default.
- W2948774324 cites W2076163444 @default.
- W2948774324 cites W2084391620 @default.
- W2948774324 cites W2084693607 @default.
- W2948774324 cites W2085836623 @default.
- W2948774324 cites W2090748520 @default.
- W2948774324 cites W2096688422 @default.
- W2948774324 cites W2097117768 @default.
- W2948774324 cites W2127070222 @default.
- W2948774324 cites W2161969291 @default.
- W2948774324 cites W2163352848 @default.
- W2948774324 cites W2235034809 @default.
- W2948774324 cites W2302052491 @default.
- W2948774324 cites W2341949230 @default.
- W2948774324 cites W2344001629 @default.
- W2948774324 cites W2397444248 @default.
- W2948774324 cites W2510539108 @default.
- W2948774324 cites W2511674095 @default.
- W2948774324 cites W2552543806 @default.
- W2948774324 cites W2571300184 @default.
- W2948774324 cites W2588593931 @default.
- W2948774324 cites W2604654088 @default.
- W2948774324 cites W2608475714 @default.
- W2948774324 cites W2648363638 @default.
- W2948774324 cites W2673629478 @default.
- W2948774324 cites W2741866663 @default.
- W2948774324 cites W2746174042 @default.
- W2948774324 cites W2751420734 @default.
- W2948774324 cites W2756554574 @default.
- W2948774324 cites W2767352048 @default.
- W2948774324 cites W2782014582 @default.
- W2948774324 cites W2789841226 @default.
- W2948774324 cites W2790037986 @default.
- W2948774324 cites W2791569356 @default.
- W2948774324 cites W2797373405 @default.
- W2948774324 cites W2803824501 @default.
- W2948774324 cites W2803990755 @default.
- W2948774324 cites W2804419996 @default.
- W2948774324 cites W2808073824 @default.
- W2948774324 cites W2885391322 @default.
- W2948774324 cites W2886569812 @default.
- W2948774324 cites W2887168878 @default.
- W2948774324 cites W2891230798 @default.
- W2948774324 cites W2894529718 @default.
- W2948774324 cites W2894901185 @default.
- W2948774324 cites W2897536392 @default.
- W2948774324 cites W2900883088 @default.
- W2948774324 cites W2901853555 @default.
- W2948774324 cites W2915061442 @default.
- W2948774324 cites W2927082171 @default.
- W2948774324 cites W568396791 @default.
- W2948774324 cites W647891931 @default.
- W2948774324 doi "https://doi.org/10.1109/tcsvt.2019.2920657" @default.
- W2948774324 hasPublicationYear "2020" @default.
- W2948774324 type Work @default.
- W2948774324 sameAs 2948774324 @default.
- W2948774324 citedByCount "11" @default.
- W2948774324 countsByYear W29487743242022 @default.
- W2948774324 countsByYear W29487743242023 @default.
- W2948774324 crossrefType "journal-article" @default.
- W2948774324 hasAuthorship W2948774324A5033741559 @default.
- W2948774324 hasAuthorship W2948774324A5066658319 @default.
- W2948774324 hasConcept C115961682 @default.
- W2948774324 hasConcept C117978034 @default.
- W2948774324 hasConcept C12267149 @default.
- W2948774324 hasConcept C127413603 @default.
- W2948774324 hasConcept C138885662 @default.
- W2948774324 hasConcept C153180895 @default.
- W2948774324 hasConcept C154945302 @default.
- W2948774324 hasConcept C17426736 @default.
- W2948774324 hasConcept C21880701 @default.
- W2948774324 hasConcept C26517878 @default.
- W2948774324 hasConcept C2776401178 @default.
- W2948774324 hasConcept C31972630 @default.
- W2948774324 hasConcept C38652104 @default.
- W2948774324 hasConcept C41008148 @default.