Matches in SemOpenAlex for { <https://semopenalex.org/work/W2948827545> ?p ?o ?g. }
- W2948827545 abstract "Efficiently computing linear algebra expressions is central to machine learning (ML) systems. Most systems support sparse formats and operations because sparse matrices are ubiquitous and their dense representation can cause prohibitive overheads. Estimating the sparsity of intermediates, however, remains a key challenge when generating execution plans or performing sparse operations. These sparsity estimates are used for cost and memory estimates, format decisions, and result allocation. Existing estimators tend to focus on matrix products only, and struggle to attain good accuracy with low estimation overhead. However, a key observation is that real-world sparse matrices commonly exhibit structural properties such as a single non-zero per row, or columns with varying sparsity. In this paper, we introduce MNC (Matrix Non-zero Count), a remarkably simple, count-based matrix synopsis that exploits these structural properties for efficient, accurate, and general sparsity estimation. We describe estimators and sketch propagation for realistic linear algebra expressions. Our experiments - on a new estimation benchmark called SparsEst - show that the MNC estimator yields good accuracy with very low overhead. This behavior makes MNC practical and broadly applicable in ML systems." @default.
- W2948827545 created "2019-06-14" @default.
- W2948827545 creator A5036119025 @default.
- W2948827545 creator A5053153176 @default.
- W2948827545 creator A5077651658 @default.
- W2948827545 creator A5088692787 @default.
- W2948827545 creator A5091709795 @default.
- W2948827545 date "2019-06-25" @default.
- W2948827545 modified "2023-09-25" @default.
- W2948827545 title "MNC" @default.
- W2948827545 cites W153182319 @default.
- W2948827545 cites W1557602349 @default.
- W2948827545 cites W1785933978 @default.
- W2948827545 cites W1832693441 @default.
- W2948827545 cites W1932742904 @default.
- W2948827545 cites W1979567624 @default.
- W2948827545 cites W1982092405 @default.
- W2948827545 cites W1992363839 @default.
- W2948827545 cites W2007259720 @default.
- W2948827545 cites W2022322548 @default.
- W2948827545 cites W2022858489 @default.
- W2948827545 cites W2045938805 @default.
- W2948827545 cites W2047061289 @default.
- W2948827545 cites W2058991275 @default.
- W2948827545 cites W2059696856 @default.
- W2948827545 cites W2064366207 @default.
- W2948827545 cites W2073479529 @default.
- W2948827545 cites W2085140829 @default.
- W2948827545 cites W2095249664 @default.
- W2948827545 cites W2108614537 @default.
- W2948827545 cites W2139422440 @default.
- W2948827545 cites W2153160273 @default.
- W2948827545 cites W2155508779 @default.
- W2948827545 cites W2160011226 @default.
- W2948827545 cites W2216541755 @default.
- W2948827545 cites W2420293330 @default.
- W2948827545 cites W2424452828 @default.
- W2948827545 cites W2508786848 @default.
- W2948827545 cites W2535724050 @default.
- W2948827545 cites W2547190417 @default.
- W2948827545 cites W2569499781 @default.
- W2948827545 cites W2612139288 @default.
- W2948827545 cites W26556108 @default.
- W2948827545 cites W2798325362 @default.
- W2948827545 cites W2798839954 @default.
- W2948827545 cites W2886938735 @default.
- W2948827545 cites W2963560792 @default.
- W2948827545 cites W2964054286 @default.
- W2948827545 cites W3098547670 @default.
- W2948827545 cites W31634058 @default.
- W2948827545 cites W4211032723 @default.
- W2948827545 cites W4242142158 @default.
- W2948827545 cites W4297971002 @default.
- W2948827545 doi "https://doi.org/10.1145/3299869.3319854" @default.
- W2948827545 hasPublicationYear "2019" @default.
- W2948827545 type Work @default.
- W2948827545 sameAs 2948827545 @default.
- W2948827545 citedByCount "7" @default.
- W2948827545 countsByYear W29488275452019 @default.
- W2948827545 countsByYear W29488275452020 @default.
- W2948827545 countsByYear W29488275452021 @default.
- W2948827545 countsByYear W29488275452023 @default.
- W2948827545 crossrefType "proceedings-article" @default.
- W2948827545 hasAuthorship W2948827545A5036119025 @default.
- W2948827545 hasAuthorship W2948827545A5053153176 @default.
- W2948827545 hasAuthorship W2948827545A5077651658 @default.
- W2948827545 hasAuthorship W2948827545A5088692787 @default.
- W2948827545 hasAuthorship W2948827545A5091709795 @default.
- W2948827545 hasConcept C105795698 @default.
- W2948827545 hasConcept C106487976 @default.
- W2948827545 hasConcept C111919701 @default.
- W2948827545 hasConcept C11413529 @default.
- W2948827545 hasConcept C120665830 @default.
- W2948827545 hasConcept C121332964 @default.
- W2948827545 hasConcept C124066611 @default.
- W2948827545 hasConcept C124851039 @default.
- W2948827545 hasConcept C126255220 @default.
- W2948827545 hasConcept C13280743 @default.
- W2948827545 hasConcept C139352143 @default.
- W2948827545 hasConcept C158693339 @default.
- W2948827545 hasConcept C159985019 @default.
- W2948827545 hasConcept C163716315 @default.
- W2948827545 hasConcept C17744445 @default.
- W2948827545 hasConcept C185429906 @default.
- W2948827545 hasConcept C185798385 @default.
- W2948827545 hasConcept C192209626 @default.
- W2948827545 hasConcept C192562407 @default.
- W2948827545 hasConcept C199539241 @default.
- W2948827545 hasConcept C205649164 @default.
- W2948827545 hasConcept C2524010 @default.
- W2948827545 hasConcept C26517878 @default.
- W2948827545 hasConcept C2776359362 @default.
- W2948827545 hasConcept C2779231336 @default.
- W2948827545 hasConcept C2779960059 @default.
- W2948827545 hasConcept C33923547 @default.
- W2948827545 hasConcept C38652104 @default.
- W2948827545 hasConcept C41008148 @default.
- W2948827545 hasConcept C56372850 @default.
- W2948827545 hasConcept C60866291 @default.
- W2948827545 hasConcept C62520636 @default.