Matches in SemOpenAlex for { <https://semopenalex.org/work/W2948851421> ?p ?o ?g. }
- W2948851421 endingPage "45" @default.
- W2948851421 startingPage "45" @default.
- W2948851421 abstract "Machining processes, including turning, are a critical capability for discrete part production. One limitation to high material removal rates and reduced cost in these processes is chatter, or unstable spindle speed-chip width combinations that exhibit a self-excited vibration. In this paper, an artificial neural network (ANN)—a data learning model—is applied to model turning stability. The novel approach is to use a physics-based process model—the analytical stability limit—to generate a (synthetic) data set that trains the ANN. This enables the process physics to be combined with data learning in a hybrid approach. As anticipated, it is observed that the number and distribution of training points influences the ability of the ANN model to capture the smaller, more closely spaced lobes that occur at lower spindle speeds. Overall, the ANN is successful (>90% accuracy) at predicting the stability behavior after appropriate training." @default.
- W2948851421 created "2019-06-14" @default.
- W2948851421 creator A5007381208 @default.
- W2948851421 creator A5007442822 @default.
- W2948851421 creator A5020981584 @default.
- W2948851421 creator A5089657829 @default.
- W2948851421 date "2019-06-08" @default.
- W2948851421 modified "2023-10-18" @default.
- W2948851421 title "Machining Chatter Prediction Using a Data Learning Model" @default.
- W2948851421 cites W1257717491 @default.
- W2948851421 cites W1798863697 @default.
- W2948851421 cites W2014699674 @default.
- W2948851421 cites W2030928743 @default.
- W2948851421 cites W2036079977 @default.
- W2948851421 cites W2069893394 @default.
- W2948851421 cites W2073092156 @default.
- W2948851421 cites W2082073601 @default.
- W2948851421 cites W2093584482 @default.
- W2948851421 cites W2140097999 @default.
- W2948851421 cites W2141823632 @default.
- W2948851421 cites W2274718518 @default.
- W2948851421 cites W2336139261 @default.
- W2948851421 cites W2338530693 @default.
- W2948851421 cites W2348539672 @default.
- W2948851421 cites W2440260721 @default.
- W2948851421 cites W2736328424 @default.
- W2948851421 cites W2747284938 @default.
- W2948851421 cites W2754714784 @default.
- W2948851421 cites W2762702908 @default.
- W2948851421 cites W2782909347 @default.
- W2948851421 cites W2794293229 @default.
- W2948851421 cites W2797598120 @default.
- W2948851421 cites W2805419590 @default.
- W2948851421 cites W2883372858 @default.
- W2948851421 cites W2886289610 @default.
- W2948851421 cites W2888608914 @default.
- W2948851421 cites W3106442405 @default.
- W2948851421 doi "https://doi.org/10.3390/jmmp3020045" @default.
- W2948851421 hasPublicationYear "2019" @default.
- W2948851421 type Work @default.
- W2948851421 sameAs 2948851421 @default.
- W2948851421 citedByCount "25" @default.
- W2948851421 countsByYear W29488514212019 @default.
- W2948851421 countsByYear W29488514212020 @default.
- W2948851421 countsByYear W29488514212021 @default.
- W2948851421 countsByYear W29488514212022 @default.
- W2948851421 countsByYear W29488514212023 @default.
- W2948851421 crossrefType "journal-article" @default.
- W2948851421 hasAuthorship W2948851421A5007381208 @default.
- W2948851421 hasAuthorship W2948851421A5007442822 @default.
- W2948851421 hasAuthorship W2948851421A5020981584 @default.
- W2948851421 hasAuthorship W2948851421A5089657829 @default.
- W2948851421 hasBestOaLocation W29488514211 @default.
- W2948851421 hasConcept C111919701 @default.
- W2948851421 hasConcept C112972136 @default.
- W2948851421 hasConcept C119857082 @default.
- W2948851421 hasConcept C121332964 @default.
- W2948851421 hasConcept C127413603 @default.
- W2948851421 hasConcept C134306372 @default.
- W2948851421 hasConcept C151201525 @default.
- W2948851421 hasConcept C154945302 @default.
- W2948851421 hasConcept C177264268 @default.
- W2948851421 hasConcept C190839683 @default.
- W2948851421 hasConcept C198394728 @default.
- W2948851421 hasConcept C199360897 @default.
- W2948851421 hasConcept C205649164 @default.
- W2948851421 hasConcept C24890656 @default.
- W2948851421 hasConcept C2775924081 @default.
- W2948851421 hasConcept C33923547 @default.
- W2948851421 hasConcept C41008148 @default.
- W2948851421 hasConcept C47446073 @default.
- W2948851421 hasConcept C50644808 @default.
- W2948851421 hasConcept C523214423 @default.
- W2948851421 hasConcept C58640448 @default.
- W2948851421 hasConcept C78519656 @default.
- W2948851421 hasConcept C98045186 @default.
- W2948851421 hasConceptScore W2948851421C111919701 @default.
- W2948851421 hasConceptScore W2948851421C112972136 @default.
- W2948851421 hasConceptScore W2948851421C119857082 @default.
- W2948851421 hasConceptScore W2948851421C121332964 @default.
- W2948851421 hasConceptScore W2948851421C127413603 @default.
- W2948851421 hasConceptScore W2948851421C134306372 @default.
- W2948851421 hasConceptScore W2948851421C151201525 @default.
- W2948851421 hasConceptScore W2948851421C154945302 @default.
- W2948851421 hasConceptScore W2948851421C177264268 @default.
- W2948851421 hasConceptScore W2948851421C190839683 @default.
- W2948851421 hasConceptScore W2948851421C198394728 @default.
- W2948851421 hasConceptScore W2948851421C199360897 @default.
- W2948851421 hasConceptScore W2948851421C205649164 @default.
- W2948851421 hasConceptScore W2948851421C24890656 @default.
- W2948851421 hasConceptScore W2948851421C2775924081 @default.
- W2948851421 hasConceptScore W2948851421C33923547 @default.
- W2948851421 hasConceptScore W2948851421C41008148 @default.
- W2948851421 hasConceptScore W2948851421C47446073 @default.
- W2948851421 hasConceptScore W2948851421C50644808 @default.
- W2948851421 hasConceptScore W2948851421C523214423 @default.
- W2948851421 hasConceptScore W2948851421C58640448 @default.
- W2948851421 hasConceptScore W2948851421C78519656 @default.