Matches in SemOpenAlex for { <https://semopenalex.org/work/W2948886556> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W2948886556 endingPage "401" @default.
- W2948886556 startingPage "401" @default.
- W2948886556 abstract "401 Objectives: 99mTc MIP-1404 (1404) is a PSMA targeted imaging agent for the detection and staging of clinically significant prostate cancer. Manual assessment of tracer uptake in SPECT/CT images is time-consuming and subjective. Automated segmentation of organs and regions of interest and the subsequent quantification of PSMA expression may help physicians improve the accuracy and consistency of diagnosis. The study objective was to evaluate the performance characteristics of a prospectively locked deep learning algorithm (PSMA-AI) in the assessment of 1404. Methods: The study included 464 evaluable patients with very low, low, or intermediate risk prostate cancer, whose diagnostic biopsy indicated Gleason grade ≤3+4 and/or who were candidates for active surveillance (Study 1404-3301). All patients received an IV injection of 1404 and SPECT/CT imaging was performed 3-6 hours post-dose. They subsequently underwent either radical prostatectomy (low and intermediate risk) or prostate biopsy (very low risk). Clinically significant disease was declared in subjects with Gleason grade >3+4 or 3+4 with ≥10% pattern 4. PSMA expression was assessed by a target-to-background (TBR) value, defined by the ratio of the maximum uptake in the prostate and the average uptake in an adjacent background (muscle) region. Manual TBR was established by three independent, blinded readers using standard imaging workstations. PSMA-AI provided an automated TBR analysis attended to by three different independent readers. TBR values for all (3+3) readers and subjects were compared to the histopathological reference, yielding 6 receiver operating characteristic (ROC) curves. The area under ROC curve (AUC) was computed to determine the performance of the algorithm in distinguishing clinically significant from non-significant disease. The AUC of the three automated reads was compared to the AUC of the three manual reads. Further, inter-reader reproducibility was measured by correlation coefficients of log(TBR) for each pair of automated readers. PSMA-AI was developed and locked before any access to 1404-3301 data was granted. Results: The manual reads demonstrated AUCs of 0.62, 0.62 and 0.63. The reads with PSMA-AI demonstrated AUCs of 0.65, 0.66 and 0.66. The PSMA-AI performance in terms of AUC was higher than manual in all nine pairwise comparisons (3[asterisk]3=9), between the two reader groups, with statistically significant improvement observed in five cases (nominal p<0.05), not accounting for multiple comparisons. When measuring reproducibility, the log(TBR) correlation coefficients for pairs of PSMA-AI readers were 0.94, 0.97 and 0.98. The binary calls of a predefined threshold demonstrated a specificity of 95%, 96%, 96% and a sensitivity of 21%, 21%, 21% in detecting clinically significant disease in patients with very low, low, or intermediate risk of prostate cancer. Conclusions: The reads with PSMA-AI demonstrated an improvement over manual assessment in terms of speed, accuracy and repeatability. With improved performance characteristics, the assessment with PSMA-AI has the potential to augment clinical utility of PSMA imaging. This study has provided encouraging initial evidence in this direction." @default.
- W2948886556 created "2019-06-14" @default.
- W2948886556 creator A5004769463 @default.
- W2948886556 creator A5009676403 @default.
- W2948886556 creator A5013108068 @default.
- W2948886556 creator A5019251905 @default.
- W2948886556 creator A5035792573 @default.
- W2948886556 creator A5038489605 @default.
- W2948886556 creator A5040347024 @default.
- W2948886556 creator A5064910504 @default.
- W2948886556 creator A5065762299 @default.
- W2948886556 creator A5090986588 @default.
- W2948886556 date "2019-05-01" @default.
- W2948886556 modified "2023-09-23" @default.
- W2948886556 title "Automated Assessment of Prostatic PSMA Expression in SPECT/CT using Deep Convolutional Neural Networks - A Prospectively Planned Retrospective Analysis of Phase 3 Study MIP-1404-3301" @default.
- W2948886556 hasPublicationYear "2019" @default.
- W2948886556 type Work @default.
- W2948886556 sameAs 2948886556 @default.
- W2948886556 citedByCount "0" @default.
- W2948886556 crossrefType "journal-article" @default.
- W2948886556 hasAuthorship W2948886556A5004769463 @default.
- W2948886556 hasAuthorship W2948886556A5009676403 @default.
- W2948886556 hasAuthorship W2948886556A5013108068 @default.
- W2948886556 hasAuthorship W2948886556A5019251905 @default.
- W2948886556 hasAuthorship W2948886556A5035792573 @default.
- W2948886556 hasAuthorship W2948886556A5038489605 @default.
- W2948886556 hasAuthorship W2948886556A5040347024 @default.
- W2948886556 hasAuthorship W2948886556A5064910504 @default.
- W2948886556 hasAuthorship W2948886556A5065762299 @default.
- W2948886556 hasAuthorship W2948886556A5090986588 @default.
- W2948886556 hasConcept C121608353 @default.
- W2948886556 hasConcept C126322002 @default.
- W2948886556 hasConcept C126838900 @default.
- W2948886556 hasConcept C154945302 @default.
- W2948886556 hasConcept C2775934546 @default.
- W2948886556 hasConcept C2776235491 @default.
- W2948886556 hasConcept C2779466945 @default.
- W2948886556 hasConcept C2780192828 @default.
- W2948886556 hasConcept C2781217009 @default.
- W2948886556 hasConcept C2989005 @default.
- W2948886556 hasConcept C41008148 @default.
- W2948886556 hasConcept C58471807 @default.
- W2948886556 hasConcept C71924100 @default.
- W2948886556 hasConcept C81363708 @default.
- W2948886556 hasConceptScore W2948886556C121608353 @default.
- W2948886556 hasConceptScore W2948886556C126322002 @default.
- W2948886556 hasConceptScore W2948886556C126838900 @default.
- W2948886556 hasConceptScore W2948886556C154945302 @default.
- W2948886556 hasConceptScore W2948886556C2775934546 @default.
- W2948886556 hasConceptScore W2948886556C2776235491 @default.
- W2948886556 hasConceptScore W2948886556C2779466945 @default.
- W2948886556 hasConceptScore W2948886556C2780192828 @default.
- W2948886556 hasConceptScore W2948886556C2781217009 @default.
- W2948886556 hasConceptScore W2948886556C2989005 @default.
- W2948886556 hasConceptScore W2948886556C41008148 @default.
- W2948886556 hasConceptScore W2948886556C58471807 @default.
- W2948886556 hasConceptScore W2948886556C71924100 @default.
- W2948886556 hasConceptScore W2948886556C81363708 @default.
- W2948886556 hasLocation W29488865561 @default.
- W2948886556 hasOpenAccess W2948886556 @default.
- W2948886556 hasPrimaryLocation W29488865561 @default.
- W2948886556 hasRelatedWork W2253262801 @default.
- W2948886556 hasRelatedWork W2329929271 @default.
- W2948886556 hasRelatedWork W2604153028 @default.
- W2948886556 hasRelatedWork W2790988768 @default.
- W2948886556 hasRelatedWork W2801986443 @default.
- W2948886556 hasRelatedWork W2943553187 @default.
- W2948886556 hasRelatedWork W2969238009 @default.
- W2948886556 hasRelatedWork W2991901957 @default.
- W2948886556 hasRelatedWork W3026933427 @default.
- W2948886556 hasRelatedWork W3031454891 @default.
- W2948886556 hasRelatedWork W3046865842 @default.
- W2948886556 hasRelatedWork W3135821256 @default.
- W2948886556 hasRelatedWork W3137730786 @default.
- W2948886556 hasRelatedWork W3165542555 @default.
- W2948886556 hasRelatedWork W3177578585 @default.
- W2948886556 hasRelatedWork W3180972814 @default.
- W2948886556 hasRelatedWork W3184191089 @default.
- W2948886556 hasRelatedWork W3185807027 @default.
- W2948886556 hasRelatedWork W3189567032 @default.
- W2948886556 hasRelatedWork W3202670079 @default.
- W2948886556 hasVolume "60" @default.
- W2948886556 isParatext "false" @default.
- W2948886556 isRetracted "false" @default.
- W2948886556 magId "2948886556" @default.
- W2948886556 workType "article" @default.