Matches in SemOpenAlex for { <https://semopenalex.org/work/W2948893225> ?p ?o ?g. }
- W2948893225 endingPage "549" @default.
- W2948893225 startingPage "541" @default.
- W2948893225 abstract "This paper proposes a novel approach for generating 3-dimensional complex geological facies models based on deep generative models. It can reproduce a wide range of conceptual geological models while possessing the flexibility necessary to honor constraints such as well data. Compared with existing geostatistics-based modeling methods, our approach produces realistic subsurface facies architecture in 3D using a state-of-the-art deep learning method called generative adversarial networks (GANs). GANs couple a generator with a discriminator, and each uses a deep convolutional neural network. The networks are trained in an adversarial manner until the generator can create “fake” images that the discriminator cannot distinguish from “real” images. We extend the original GAN approach to 3D geological modeling at the reservoir scale. The GANs are trained using a library of 3D facies models. Once the GANs have been trained, they can generate a variety of geologically realistic facies models constrained by well data interpretations. This geomodelling approach using GANs has been tested on models of both complex fluvial depositional systems and carbonate reservoirs that exhibit progradational and aggradational trends. The results demonstrate that this deep learning-driven modeling approach can capture more realistic facies architectures and associations than existing geostatistical modeling methods, which often fail to reproduce heterogeneous nonstationary sedimentary facies with apparent depositional trend." @default.
- W2948893225 created "2019-06-14" @default.
- W2948893225 creator A5026905706 @default.
- W2948893225 creator A5053924365 @default.
- W2948893225 creator A5058965019 @default.
- W2948893225 creator A5072631083 @default.
- W2948893225 creator A5072694368 @default.
- W2948893225 creator A5082290231 @default.
- W2948893225 date "2019-06-01" @default.
- W2948893225 modified "2023-10-16" @default.
- W2948893225 title "Generating geologically realistic 3D reservoir facies models using deep learning of sedimentary architecture with generative adversarial networks" @default.
- W2948893225 cites W1537810918 @default.
- W2948893225 cites W155812880 @default.
- W2948893225 cites W1680390 @default.
- W2948893225 cites W1975862709 @default.
- W2948893225 cites W1989726841 @default.
- W2948893225 cites W2052931217 @default.
- W2948893225 cites W2074984119 @default.
- W2948893225 cites W2094351426 @default.
- W2948893225 cites W2098280884 @default.
- W2948893225 cites W2148903074 @default.
- W2948893225 cites W2606759614 @default.
- W2948893225 cites W2963420272 @default.
- W2948893225 cites W2963917315 @default.
- W2948893225 cites W3123551284 @default.
- W2948893225 doi "https://doi.org/10.1007/s12182-019-0328-4" @default.
- W2948893225 hasPublicationYear "2019" @default.
- W2948893225 type Work @default.
- W2948893225 sameAs 2948893225 @default.
- W2948893225 citedByCount "64" @default.
- W2948893225 countsByYear W29488932252019 @default.
- W2948893225 countsByYear W29488932252020 @default.
- W2948893225 countsByYear W29488932252021 @default.
- W2948893225 countsByYear W29488932252022 @default.
- W2948893225 countsByYear W29488932252023 @default.
- W2948893225 crossrefType "journal-article" @default.
- W2948893225 hasAuthorship W2948893225A5026905706 @default.
- W2948893225 hasAuthorship W2948893225A5053924365 @default.
- W2948893225 hasAuthorship W2948893225A5058965019 @default.
- W2948893225 hasAuthorship W2948893225A5072631083 @default.
- W2948893225 hasAuthorship W2948893225A5072694368 @default.
- W2948893225 hasAuthorship W2948893225A5082290231 @default.
- W2948893225 hasBestOaLocation W29488932251 @default.
- W2948893225 hasConcept C105795698 @default.
- W2948893225 hasConcept C108583219 @default.
- W2948893225 hasConcept C109007969 @default.
- W2948893225 hasConcept C119857082 @default.
- W2948893225 hasConcept C121332964 @default.
- W2948893225 hasConcept C125572338 @default.
- W2948893225 hasConcept C126753816 @default.
- W2948893225 hasConcept C127313418 @default.
- W2948893225 hasConcept C14641988 @default.
- W2948893225 hasConcept C146588470 @default.
- W2948893225 hasConcept C151730666 @default.
- W2948893225 hasConcept C153180895 @default.
- W2948893225 hasConcept C154945302 @default.
- W2948893225 hasConcept C163258240 @default.
- W2948893225 hasConcept C187320778 @default.
- W2948893225 hasConcept C2779803651 @default.
- W2948893225 hasConcept C2780992000 @default.
- W2948893225 hasConcept C33923547 @default.
- W2948893225 hasConcept C39890363 @default.
- W2948893225 hasConcept C41008148 @default.
- W2948893225 hasConcept C62520636 @default.
- W2948893225 hasConcept C76155785 @default.
- W2948893225 hasConcept C81363708 @default.
- W2948893225 hasConcept C94747663 @default.
- W2948893225 hasConcept C94915269 @default.
- W2948893225 hasConceptScore W2948893225C105795698 @default.
- W2948893225 hasConceptScore W2948893225C108583219 @default.
- W2948893225 hasConceptScore W2948893225C109007969 @default.
- W2948893225 hasConceptScore W2948893225C119857082 @default.
- W2948893225 hasConceptScore W2948893225C121332964 @default.
- W2948893225 hasConceptScore W2948893225C125572338 @default.
- W2948893225 hasConceptScore W2948893225C126753816 @default.
- W2948893225 hasConceptScore W2948893225C127313418 @default.
- W2948893225 hasConceptScore W2948893225C14641988 @default.
- W2948893225 hasConceptScore W2948893225C146588470 @default.
- W2948893225 hasConceptScore W2948893225C151730666 @default.
- W2948893225 hasConceptScore W2948893225C153180895 @default.
- W2948893225 hasConceptScore W2948893225C154945302 @default.
- W2948893225 hasConceptScore W2948893225C163258240 @default.
- W2948893225 hasConceptScore W2948893225C187320778 @default.
- W2948893225 hasConceptScore W2948893225C2779803651 @default.
- W2948893225 hasConceptScore W2948893225C2780992000 @default.
- W2948893225 hasConceptScore W2948893225C33923547 @default.
- W2948893225 hasConceptScore W2948893225C39890363 @default.
- W2948893225 hasConceptScore W2948893225C41008148 @default.
- W2948893225 hasConceptScore W2948893225C62520636 @default.
- W2948893225 hasConceptScore W2948893225C76155785 @default.
- W2948893225 hasConceptScore W2948893225C81363708 @default.
- W2948893225 hasConceptScore W2948893225C94747663 @default.
- W2948893225 hasConceptScore W2948893225C94915269 @default.
- W2948893225 hasIssue "3" @default.
- W2948893225 hasLocation W29488932251 @default.
- W2948893225 hasOpenAccess W2948893225 @default.
- W2948893225 hasPrimaryLocation W29488932251 @default.
- W2948893225 hasRelatedWork W2337926734 @default.