Matches in SemOpenAlex for { <https://semopenalex.org/work/W2948946989> ?p ?o ?g. }
- W2948946989 abstract "Short Abstract The extent to which gene fusions function as drivers of cancer remains a critical open question. Current algorithms do not sufficiently identify false-positive fusions arising during library preparation, sequencing, and alignment. Here, we introduce a new algorithm, DEEPEST, that uses statistical modeling to minimize false-positives while increasing the sensitivity of fusion detection. In 9,946 tumor RNA-sequencing datasets from The Cancer Genome Atlas (TCGA) across 33 tumor types, DEEPEST identifies 31,007 fusions, 30% more than identified by other methods, while calling ten-fold fewer false-positive fusions in non-transformed human tissues. We leverage the increased precision of DEEPEST to discover new cancer biology. For example, 888 new candidate oncogenes are identified based on over-representation in DEEPEST-Fusion calls, and 1,078 previously unreported fusions involving long intergenic noncoding RNAs partners, demonstrating a previously unappreciated prevalence and potential for function. Specific protein domains are enriched in DEEPEST calls, demonstrating a global selection for fusion functionality: kinase domains are nearly 2-fold more enriched in DEEPEST calls than expected by chance, as are domains involved in (anaerobic) metabolism and DNA binding. DEEPEST also reveals a high enrichment for fusions involving known and novel oncogenes in diseases including ovarian cancer, which has had minimal treatment advances in recent decades, finding that more than 50% of tumors harbor gene fusions predicted to be oncogenic. The statistical algorithms, population-level analytic framework, and the biological conclusions of DEEPEST call for increased attention to gene fusions as drivers of cancer and for future research into using fusions for targeted therapy. Significance Gene fusions are tumor-specific genomic aberrations and are among the most powerful biomarkers and drug targets in translational cancer biology. The advent of RNA-Seq technologies over the past decade has provided a unique opportunity for detecting novel fusions via deploying computational algorithms on public sequencing databases. Yet, precise fusion detection algorithms are still out of reach. We develop DEEPEST, a highly specific and efficient statistical pipeline specially designed for mining massive sequencing databases, and apply it to all 33 tumor types and 10,500 samples in The Cancer Genome Atlas database. We systematically profile the landscape of detected fusions via employing classic statistical models and identify several signatures of selection for fusions in tumors. Software availability DEEPEST-Fusion workflow with a detailed readme file is available as a Github repository: https://github.com/salzmanlab/DEEPEST-Fusion . In addition to the main workflow, which is based on CWL, example input and batch scripts (for job submission on local clusters), and codes for building the SBT files and SBT querying are provided in the repository. All custom scripts used for systematic analysis of fusions are also available in the same repository." @default.
- W2948946989 created "2019-06-14" @default.
- W2948946989 creator A5007106770 @default.
- W2948946989 creator A5008860596 @default.
- W2948946989 creator A5031413303 @default.
- W2948946989 creator A5046221590 @default.
- W2948946989 creator A5049726850 @default.
- W2948946989 creator A5053317035 @default.
- W2948946989 creator A5055436644 @default.
- W2948946989 date "2019-06-03" @default.
- W2948946989 modified "2023-09-27" @default.
- W2948946989 title "Improved detection of gene fusions by applying statistical methods reveals new oncogenic RNA cancer drivers" @default.
- W2948946989 cites W1255676896 @default.
- W2948946989 cites W1538419182 @default.
- W2948946989 cites W1566841623 @default.
- W2948946989 cites W1596515083 @default.
- W2948946989 cites W1929233057 @default.
- W2948946989 cites W1956871134 @default.
- W2948946989 cites W1965388358 @default.
- W2948946989 cites W1970778994 @default.
- W2948946989 cites W1974720903 @default.
- W2948946989 cites W1982967858 @default.
- W2948946989 cites W1998076166 @default.
- W2948946989 cites W2000564844 @default.
- W2948946989 cites W2005036868 @default.
- W2948946989 cites W2014606320 @default.
- W2948946989 cites W2018838463 @default.
- W2948946989 cites W2030205108 @default.
- W2948946989 cites W2034305079 @default.
- W2948946989 cites W2042337609 @default.
- W2948946989 cites W2045762186 @default.
- W2948946989 cites W2053343049 @default.
- W2948946989 cites W2055402151 @default.
- W2948946989 cites W2056530510 @default.
- W2948946989 cites W2059579036 @default.
- W2948946989 cites W2077858999 @default.
- W2948946989 cites W2087616883 @default.
- W2948946989 cites W2088325873 @default.
- W2948946989 cites W2092321143 @default.
- W2948946989 cites W2096989136 @default.
- W2948946989 cites W2097557938 @default.
- W2948946989 cites W2100343950 @default.
- W2948946989 cites W2101127767 @default.
- W2948946989 cites W2114031931 @default.
- W2948946989 cites W2138601221 @default.
- W2948946989 cites W2140334256 @default.
- W2948946989 cites W2144283851 @default.
- W2948946989 cites W2149441684 @default.
- W2948946989 cites W2162547088 @default.
- W2948946989 cites W2167321137 @default.
- W2948946989 cites W2266239166 @default.
- W2948946989 cites W2271526763 @default.
- W2948946989 cites W2285093314 @default.
- W2948946989 cites W2336315810 @default.
- W2948946989 cites W2511390867 @default.
- W2948946989 cites W2535013134 @default.
- W2948946989 cites W2551580107 @default.
- W2948946989 cites W2555392689 @default.
- W2948946989 cites W2587111948 @default.
- W2948946989 cites W2607938959 @default.
- W2948946989 cites W2614443510 @default.
- W2948946989 cites W2619845369 @default.
- W2948946989 cites W2765635284 @default.
- W2948946989 cites W2780260597 @default.
- W2948946989 cites W2784570320 @default.
- W2948946989 cites W2796292093 @default.
- W2948946989 cites W2887071858 @default.
- W2948946989 cites W2979354379 @default.
- W2948946989 cites W4247477139 @default.
- W2948946989 cites W2032752514 @default.
- W2948946989 doi "https://doi.org/10.1101/659078" @default.
- W2948946989 hasPublicationYear "2019" @default.
- W2948946989 type Work @default.
- W2948946989 sameAs 2948946989 @default.
- W2948946989 citedByCount "0" @default.
- W2948946989 crossrefType "posted-content" @default.
- W2948946989 hasAuthorship W2948946989A5007106770 @default.
- W2948946989 hasAuthorship W2948946989A5008860596 @default.
- W2948946989 hasAuthorship W2948946989A5031413303 @default.
- W2948946989 hasAuthorship W2948946989A5046221590 @default.
- W2948946989 hasAuthorship W2948946989A5049726850 @default.
- W2948946989 hasAuthorship W2948946989A5053317035 @default.
- W2948946989 hasAuthorship W2948946989A5055436644 @default.
- W2948946989 hasBestOaLocation W29489469891 @default.
- W2948946989 hasConcept C104317684 @default.
- W2948946989 hasConcept C111829193 @default.
- W2948946989 hasConcept C119857082 @default.
- W2948946989 hasConcept C121608353 @default.
- W2948946989 hasConcept C141231307 @default.
- W2948946989 hasConcept C2908647359 @default.
- W2948946989 hasConcept C41008148 @default.
- W2948946989 hasConcept C54355233 @default.
- W2948946989 hasConcept C60644358 @default.
- W2948946989 hasConcept C64869954 @default.
- W2948946989 hasConcept C67705224 @default.
- W2948946989 hasConcept C70721500 @default.
- W2948946989 hasConcept C71924100 @default.
- W2948946989 hasConcept C86803240 @default.
- W2948946989 hasConcept C99454951 @default.
- W2948946989 hasConceptScore W2948946989C104317684 @default.