Matches in SemOpenAlex for { <https://semopenalex.org/work/W2949006411> ?p ?o ?g. }
- W2949006411 endingPage "120727" @default.
- W2949006411 startingPage "120727" @default.
- W2949006411 abstract "The adsorption of six heavy metals (lead, cadmium, nickel, arsenic, copper, and zinc) on 44 biochars were modeled using artificial neural network (ANN) and random forest (RF) based on 353 dataset of adsorption experiments from literatures. The regression models were trained and optimized to predict the adsorption capacity according to biochar characteristics, metal sources, environmental conditions (e.g. temperature and pH), and the initial concentration ratio of metals to biochars. The RF model showed better accuracy and predictive performance for adsorption efficiency (R2 = 0.973) than ANN model (R2 = 0.948). The biochar characteristics were most significant for adsorption efficiency, in which the contribution of cation exchange capacity (CEC) and pHH2O of biochars accounted for 66% in the biochar characteristics. However, surface area of the biochars provided only 2% of adsorption efficiency. Meanwhile, the models developed by RF had better generalization ability than ANN model. The accurate predicted ability of developed models could significantly reduce experiment workload such as predicting the removal efficiency of biochars for target metal according to biochar characteristics, so as to select more efficient biochar without increasing experimental times. The relative importance of variables could provide a right direction for better treatments of heavy metals in the real water and wastewater." @default.
- W2949006411 created "2019-06-14" @default.
- W2949006411 creator A5016030177 @default.
- W2949006411 creator A5053298437 @default.
- W2949006411 creator A5058314532 @default.
- W2949006411 date "2019-10-01" @default.
- W2949006411 modified "2023-10-18" @default.
- W2949006411 title "The application of machine learning methods for prediction of metal sorption onto biochars" @default.
- W2949006411 cites W1039718708 @default.
- W2949006411 cites W1543335190 @default.
- W2949006411 cites W1657412191 @default.
- W2949006411 cites W1969841306 @default.
- W2949006411 cites W1972077487 @default.
- W2949006411 cites W1977143566 @default.
- W2949006411 cites W1987727121 @default.
- W2949006411 cites W1988809803 @default.
- W2949006411 cites W1989904916 @default.
- W2949006411 cites W1992469412 @default.
- W2949006411 cites W1998874983 @default.
- W2949006411 cites W1999722614 @default.
- W2949006411 cites W2006276740 @default.
- W2949006411 cites W2006581383 @default.
- W2949006411 cites W2010080818 @default.
- W2949006411 cites W2016334396 @default.
- W2949006411 cites W2024060772 @default.
- W2949006411 cites W2028070629 @default.
- W2949006411 cites W2028496256 @default.
- W2949006411 cites W2031493035 @default.
- W2949006411 cites W2031720269 @default.
- W2949006411 cites W2033275656 @default.
- W2949006411 cites W2040152771 @default.
- W2949006411 cites W2053491738 @default.
- W2949006411 cites W2073401726 @default.
- W2949006411 cites W2078087363 @default.
- W2949006411 cites W2093098048 @default.
- W2949006411 cites W2097457893 @default.
- W2949006411 cites W2107774501 @default.
- W2949006411 cites W2113536011 @default.
- W2949006411 cites W2134071725 @default.
- W2949006411 cites W2137495760 @default.
- W2949006411 cites W2152063651 @default.
- W2949006411 cites W2166774843 @default.
- W2949006411 cites W2183186634 @default.
- W2949006411 cites W2216536395 @default.
- W2949006411 cites W2256613245 @default.
- W2949006411 cites W2318880614 @default.
- W2949006411 cites W2328814437 @default.
- W2949006411 cites W2339093665 @default.
- W2949006411 cites W2340540879 @default.
- W2949006411 cites W2473839379 @default.
- W2949006411 cites W2513911424 @default.
- W2949006411 cites W2520676852 @default.
- W2949006411 cites W2574211399 @default.
- W2949006411 cites W2582374323 @default.
- W2949006411 cites W2588410713 @default.
- W2949006411 cites W2592270600 @default.
- W2949006411 cites W2599220542 @default.
- W2949006411 cites W2605614336 @default.
- W2949006411 cites W2605986812 @default.
- W2949006411 cites W2618179696 @default.
- W2949006411 cites W2624775565 @default.
- W2949006411 cites W2742859749 @default.
- W2949006411 cites W2743235861 @default.
- W2949006411 cites W2744720038 @default.
- W2949006411 cites W2757692797 @default.
- W2949006411 cites W2796665802 @default.
- W2949006411 cites W2798149135 @default.
- W2949006411 cites W2802050688 @default.
- W2949006411 cites W2810524590 @default.
- W2949006411 cites W2883319476 @default.
- W2949006411 cites W2887187316 @default.
- W2949006411 cites W2887689413 @default.
- W2949006411 cites W2890908939 @default.
- W2949006411 cites W2891305897 @default.
- W2949006411 cites W2893818424 @default.
- W2949006411 cites W2901460451 @default.
- W2949006411 cites W2911964244 @default.
- W2949006411 cites W292097066 @default.
- W2949006411 cites W832922239 @default.
- W2949006411 doi "https://doi.org/10.1016/j.jhazmat.2019.06.004" @default.
- W2949006411 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31202073" @default.
- W2949006411 hasPublicationYear "2019" @default.
- W2949006411 type Work @default.
- W2949006411 sameAs 2949006411 @default.
- W2949006411 citedByCount "150" @default.
- W2949006411 countsByYear W29490064112020 @default.
- W2949006411 countsByYear W29490064112021 @default.
- W2949006411 countsByYear W29490064112022 @default.
- W2949006411 countsByYear W29490064112023 @default.
- W2949006411 crossrefType "journal-article" @default.
- W2949006411 hasAuthorship W2949006411A5016030177 @default.
- W2949006411 hasAuthorship W2949006411A5053298437 @default.
- W2949006411 hasAuthorship W2949006411A5058314532 @default.
- W2949006411 hasConcept C107872376 @default.
- W2949006411 hasConcept C150394285 @default.
- W2949006411 hasConcept C159390177 @default.
- W2949006411 hasConcept C159750122 @default.
- W2949006411 hasConcept C178790620 @default.