Matches in SemOpenAlex for { <https://semopenalex.org/work/W2949060573> ?p ?o ?g. }
- W2949060573 endingPage "54" @default.
- W2949060573 startingPage "54" @default.
- W2949060573 abstract "Data analysis for metabolomics is undergoing rapid progress thanks to the proliferation of novel tools and the standardization of existing workflows. As untargeted metabolomics datasets and experiments continue to increase in size and complexity, standardized workflows are often not sufficiently sophisticated. In addition, the ground truth for untargeted metabolomics experiments is intrinsically unknown and the performance of tools is difficult to evaluate. Here, the problem of dynamic multi-class metabolomics experiments was investigated using a simulated dataset with a known ground truth. This simulated dataset was used to evaluate the performance of tinderesting, a new and intuitive tool based on gathering expert knowledge to be used in machine learning. The results were compared to EDGE, a statistical method for time series data. This paper presents three novel outcomes. The first is a way to simulate dynamic metabolomics data with a known ground truth based on ordinary differential equations. This method is made available through the MetaboLouise R package. Second, the EDGE tool, originally developed for genomics data analysis, is highly performant in analyzing dynamic case vs. control metabolomics data. Third, the tinderesting method is introduced to analyse more complex dynamic metabolomics experiments. This tool consists of a Shiny app for collecting expert knowledge, which in turn is used to train a machine learning model to emulate the decision process of the expert. This approach does not replace traditional data analysis workflows for metabolomics, but can provide additional information, improved performance or easier interpretation of results. The advantage is that the tool is agnostic to the complexity of the experiment, and thus is easier to use in advanced setups. All code for the presented analysis, MetaboLouise and tinderesting are freely available." @default.
- W2949060573 created "2019-06-27" @default.
- W2949060573 creator A5004931469 @default.
- W2949060573 creator A5017910489 @default.
- W2949060573 creator A5020496396 @default.
- W2949060573 creator A5022353982 @default.
- W2949060573 creator A5024401144 @default.
- W2949060573 creator A5024445778 @default.
- W2949060573 creator A5037881501 @default.
- W2949060573 creator A5042123511 @default.
- W2949060573 creator A5053271927 @default.
- W2949060573 creator A5061037044 @default.
- W2949060573 creator A5082690777 @default.
- W2949060573 date "2019-03-20" @default.
- W2949060573 modified "2023-10-18" @default.
- W2949060573 title "Using Expert Driven Machine Learning to Enhance Dynamic Metabolomics Data Analysis" @default.
- W2949060573 cites W1144869070 @default.
- W2949060573 cites W1964895626 @default.
- W2949060573 cites W2008620264 @default.
- W2949060573 cites W2011635427 @default.
- W2949060573 cites W2022710553 @default.
- W2949060573 cites W2051269613 @default.
- W2949060573 cites W2055993805 @default.
- W2949060573 cites W2089221066 @default.
- W2949060573 cites W2109521384 @default.
- W2949060573 cites W2148143831 @default.
- W2949060573 cites W2149309843 @default.
- W2949060573 cites W2149566602 @default.
- W2949060573 cites W2293300343 @default.
- W2949060573 cites W2328176404 @default.
- W2949060573 cites W2567711320 @default.
- W2949060573 cites W2803664483 @default.
- W2949060573 cites W2809895957 @default.
- W2949060573 cites W2915466824 @default.
- W2949060573 cites W3103786587 @default.
- W2949060573 doi "https://doi.org/10.3390/metabo9030054" @default.
- W2949060573 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6468718" @default.
- W2949060573 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30897797" @default.
- W2949060573 hasPublicationYear "2019" @default.
- W2949060573 type Work @default.
- W2949060573 sameAs 2949060573 @default.
- W2949060573 citedByCount "14" @default.
- W2949060573 countsByYear W29490605732019 @default.
- W2949060573 countsByYear W29490605732020 @default.
- W2949060573 countsByYear W29490605732021 @default.
- W2949060573 countsByYear W29490605732022 @default.
- W2949060573 countsByYear W29490605732023 @default.
- W2949060573 crossrefType "journal-article" @default.
- W2949060573 hasAuthorship W2949060573A5004931469 @default.
- W2949060573 hasAuthorship W2949060573A5017910489 @default.
- W2949060573 hasAuthorship W2949060573A5020496396 @default.
- W2949060573 hasAuthorship W2949060573A5022353982 @default.
- W2949060573 hasAuthorship W2949060573A5024401144 @default.
- W2949060573 hasAuthorship W2949060573A5024445778 @default.
- W2949060573 hasAuthorship W2949060573A5037881501 @default.
- W2949060573 hasAuthorship W2949060573A5042123511 @default.
- W2949060573 hasAuthorship W2949060573A5053271927 @default.
- W2949060573 hasAuthorship W2949060573A5061037044 @default.
- W2949060573 hasAuthorship W2949060573A5082690777 @default.
- W2949060573 hasBestOaLocation W29490605731 @default.
- W2949060573 hasConcept C111919701 @default.
- W2949060573 hasConcept C119857082 @default.
- W2949060573 hasConcept C124101348 @default.
- W2949060573 hasConcept C146849305 @default.
- W2949060573 hasConcept C154945302 @default.
- W2949060573 hasConcept C177212765 @default.
- W2949060573 hasConcept C188087704 @default.
- W2949060573 hasConcept C21565614 @default.
- W2949060573 hasConcept C2522767166 @default.
- W2949060573 hasConcept C41008148 @default.
- W2949060573 hasConcept C60644358 @default.
- W2949060573 hasConcept C77088390 @default.
- W2949060573 hasConcept C86803240 @default.
- W2949060573 hasConcept C98045186 @default.
- W2949060573 hasConceptScore W2949060573C111919701 @default.
- W2949060573 hasConceptScore W2949060573C119857082 @default.
- W2949060573 hasConceptScore W2949060573C124101348 @default.
- W2949060573 hasConceptScore W2949060573C146849305 @default.
- W2949060573 hasConceptScore W2949060573C154945302 @default.
- W2949060573 hasConceptScore W2949060573C177212765 @default.
- W2949060573 hasConceptScore W2949060573C188087704 @default.
- W2949060573 hasConceptScore W2949060573C21565614 @default.
- W2949060573 hasConceptScore W2949060573C2522767166 @default.
- W2949060573 hasConceptScore W2949060573C41008148 @default.
- W2949060573 hasConceptScore W2949060573C60644358 @default.
- W2949060573 hasConceptScore W2949060573C77088390 @default.
- W2949060573 hasConceptScore W2949060573C86803240 @default.
- W2949060573 hasConceptScore W2949060573C98045186 @default.
- W2949060573 hasFunder F4320321730 @default.
- W2949060573 hasIssue "3" @default.
- W2949060573 hasLocation W29490605731 @default.
- W2949060573 hasLocation W29490605732 @default.
- W2949060573 hasLocation W29490605733 @default.
- W2949060573 hasLocation W29490605734 @default.
- W2949060573 hasLocation W29490605735 @default.
- W2949060573 hasLocation W29490605736 @default.
- W2949060573 hasLocation W29490605737 @default.
- W2949060573 hasOpenAccess W2949060573 @default.