Matches in SemOpenAlex for { <https://semopenalex.org/work/W2949062675> ?p ?o ?g. }
- W2949062675 endingPage "78074" @default.
- W2949062675 startingPage "78063" @default.
- W2949062675 abstract "Photovoltaic power generation forecasting is an important topic in the field of sustainable power system design, energy conversion management, and smart grid construction. Difficulties arise while the generated PV power is usually unstable due to the variability of solar irradiance, temperature, and other meteorological factors. In this paper, a hybrid ensemble deep learning framework is proposed to forecast short-term photovoltaic power generation in a time series manner. Two LSTM neural networks are employed working on temperature and power outputs forecasting, respectively. The forecasting results are flattened and combined with a fully connected layer to enhance forecasting accuracy. Moreover, we adopted the attention mechanism for the two LSTM neural networks to adaptively focus on input features that are more significant in forecasting. Comprehensive experiments are conducted with recently collected real-world photovoltaic power generation datasets. Three error metrics were adopted to compare the forecasting results produced by attention LSTM model with state-of-art methods, including the persistent model, the auto-regressive integrated moving average model with exogenous variable (ARIMAX), multi-layer perceptron (MLP), and the traditional LSTM model in all four seasons and various forecasting horizons to show the effectiveness and robustness of the proposed method." @default.
- W2949062675 created "2019-06-27" @default.
- W2949062675 creator A5000510528 @default.
- W2949062675 creator A5004717872 @default.
- W2949062675 creator A5023126889 @default.
- W2949062675 creator A5039611523 @default.
- W2949062675 creator A5041522926 @default.
- W2949062675 creator A5058197553 @default.
- W2949062675 date "2019-01-01" @default.
- W2949062675 modified "2023-10-15" @default.
- W2949062675 title "Short-Term Photovoltaic Power Forecasting Based on Long Short Term Memory Neural Network and Attention Mechanism" @default.
- W2949062675 cites W2021358089 @default.
- W2949062675 cites W2064675550 @default.
- W2949062675 cites W2107878631 @default.
- W2949062675 cites W2339063851 @default.
- W2949062675 cites W2346662913 @default.
- W2949062675 cites W2369565839 @default.
- W2949062675 cites W2564042453 @default.
- W2949062675 cites W2570635525 @default.
- W2949062675 cites W2593267520 @default.
- W2949062675 cites W2600936178 @default.
- W2949062675 cites W2607185215 @default.
- W2949062675 cites W2763128055 @default.
- W2949062675 cites W2763440627 @default.
- W2949062675 cites W2767559196 @default.
- W2949062675 cites W2782267877 @default.
- W2949062675 cites W2794078445 @default.
- W2949062675 cites W2799785103 @default.
- W2949062675 cites W2801658026 @default.
- W2949062675 cites W2802229284 @default.
- W2949062675 cites W2807122762 @default.
- W2949062675 cites W2807371781 @default.
- W2949062675 cites W2884380318 @default.
- W2949062675 cites W2895180337 @default.
- W2949062675 cites W2897156932 @default.
- W2949062675 cites W2899934327 @default.
- W2949062675 cites W2905323649 @default.
- W2949062675 cites W2940368890 @default.
- W2949062675 cites W2962878352 @default.
- W2949062675 doi "https://doi.org/10.1109/access.2019.2923006" @default.
- W2949062675 hasPublicationYear "2019" @default.
- W2949062675 type Work @default.
- W2949062675 sameAs 2949062675 @default.
- W2949062675 citedByCount "209" @default.
- W2949062675 countsByYear W29490626752019 @default.
- W2949062675 countsByYear W29490626752020 @default.
- W2949062675 countsByYear W29490626752021 @default.
- W2949062675 countsByYear W29490626752022 @default.
- W2949062675 countsByYear W29490626752023 @default.
- W2949062675 crossrefType "journal-article" @default.
- W2949062675 hasAuthorship W2949062675A5000510528 @default.
- W2949062675 hasAuthorship W2949062675A5004717872 @default.
- W2949062675 hasAuthorship W2949062675A5023126889 @default.
- W2949062675 hasAuthorship W2949062675A5039611523 @default.
- W2949062675 hasAuthorship W2949062675A5041522926 @default.
- W2949062675 hasAuthorship W2949062675A5058197553 @default.
- W2949062675 hasBestOaLocation W29490626751 @default.
- W2949062675 hasConcept C111472728 @default.
- W2949062675 hasConcept C119599485 @default.
- W2949062675 hasConcept C121332964 @default.
- W2949062675 hasConcept C127413603 @default.
- W2949062675 hasConcept C138885662 @default.
- W2949062675 hasConcept C154945302 @default.
- W2949062675 hasConcept C41008148 @default.
- W2949062675 hasConcept C41291067 @default.
- W2949062675 hasConcept C50644808 @default.
- W2949062675 hasConcept C61797465 @default.
- W2949062675 hasConcept C62520636 @default.
- W2949062675 hasConcept C89611455 @default.
- W2949062675 hasConceptScore W2949062675C111472728 @default.
- W2949062675 hasConceptScore W2949062675C119599485 @default.
- W2949062675 hasConceptScore W2949062675C121332964 @default.
- W2949062675 hasConceptScore W2949062675C127413603 @default.
- W2949062675 hasConceptScore W2949062675C138885662 @default.
- W2949062675 hasConceptScore W2949062675C154945302 @default.
- W2949062675 hasConceptScore W2949062675C41008148 @default.
- W2949062675 hasConceptScore W2949062675C41291067 @default.
- W2949062675 hasConceptScore W2949062675C50644808 @default.
- W2949062675 hasConceptScore W2949062675C61797465 @default.
- W2949062675 hasConceptScore W2949062675C62520636 @default.
- W2949062675 hasConceptScore W2949062675C89611455 @default.
- W2949062675 hasFunder F4320321001 @default.
- W2949062675 hasLocation W29490626751 @default.
- W2949062675 hasOpenAccess W2949062675 @default.
- W2949062675 hasPrimaryLocation W29490626751 @default.
- W2949062675 hasRelatedWork W1987137857 @default.
- W2949062675 hasRelatedWork W2143930673 @default.
- W2949062675 hasRelatedWork W2246950911 @default.
- W2949062675 hasRelatedWork W2359007671 @default.
- W2949062675 hasRelatedWork W2359848552 @default.
- W2949062675 hasRelatedWork W2364949660 @default.
- W2949062675 hasRelatedWork W2369077650 @default.
- W2949062675 hasRelatedWork W2372022541 @default.
- W2949062675 hasRelatedWork W2386387936 @default.
- W2949062675 hasRelatedWork W2611940600 @default.
- W2949062675 hasVolume "7" @default.
- W2949062675 isParatext "false" @default.
- W2949062675 isRetracted "false" @default.