Matches in SemOpenAlex for { <https://semopenalex.org/work/W2949071207> ?p ?o ?g. }
- W2949071207 abstract "Chimeric transcripts are commonly defined as transcripts linking two or more different genes in the genome, and can be explained by various biological mechanisms such as genomic rearrangement, read-through or trans-splicing, but also by technical or biological artefacts. Several studies have shown their importance in cancer, cell pluripotency and motility. Many programs have recently been developed to identify chimeras from Illumina RNA-seq data (mostly fusion genes in cancer). However outputs of different programs on the same dataset can be widely inconsistent, and tend to include many false positives. Other issues relate to simulated datasets restricted to fusion genes, real datasets with limited numbers of validated cases, result inconsistencies between simulated and real datasets, and gene rather than junction level assessment.Here we present ChimPipe, a modular and easy-to-use method to reliably identify fusion genes and transcription-induced chimeras from paired-end Illumina RNA-seq data. We have also produced realistic simulated datasets for three different read lengths, and enhanced two gold-standard cancer datasets by associating exact junction points to validated gene fusions. Benchmarking ChimPipe together with four other state-of-the-art tools on this data showed ChimPipe to be the top program at identifying exact junction coordinates for both kinds of datasets, and the one showing the best trade-off between sensitivity and precision. Applied to 106 ENCODE human RNA-seq datasets, ChimPipe identified 137 high confidence chimeras connecting the protein coding sequence of their parent genes. In subsequent experiments, three out of four predicted chimeras, two of which recurrently expressed in a large majority of the samples, could be validated. Cloning and sequencing of the three cases revealed several new chimeric transcript structures, 3 of which with the potential to encode a chimeric protein for which we hypothesized a new role. Applying ChimPipe to human and mouse ENCODE RNA-seq data led to the identification of 131 recurrent chimeras common to both species, and therefore potentially conserved.ChimPipe combines discordant paired-end reads and split-reads to detect any kind of chimeras, including those originating from polymerase read-through, and shows an excellent trade-off between sensitivity and precision. The chimeras found by ChimPipe can be validated in-vitro with high accuracy." @default.
- W2949071207 created "2019-06-27" @default.
- W2949071207 creator A5003109164 @default.
- W2949071207 creator A5025257753 @default.
- W2949071207 creator A5031469755 @default.
- W2949071207 creator A5039828476 @default.
- W2949071207 creator A5049418625 @default.
- W2949071207 creator A5052502603 @default.
- W2949071207 creator A5067701434 @default.
- W2949071207 creator A5072600261 @default.
- W2949071207 creator A5072898835 @default.
- W2949071207 creator A5089996702 @default.
- W2949071207 date "2017-01-03" @default.
- W2949071207 modified "2023-10-12" @default.
- W2949071207 title "ChimPipe: accurate detection of fusion genes and transcription-induced chimeras from RNA-seq data" @default.
- W2949071207 cites W1803102843 @default.
- W2949071207 cites W1968332563 @default.
- W2949071207 cites W1972417326 @default.
- W2949071207 cites W1978227858 @default.
- W2949071207 cites W1980344333 @default.
- W2949071207 cites W1981528949 @default.
- W2949071207 cites W1990305460 @default.
- W2949071207 cites W1991543373 @default.
- W2949071207 cites W2010874920 @default.
- W2949071207 cites W2016371780 @default.
- W2949071207 cites W2025648894 @default.
- W2949071207 cites W2027963144 @default.
- W2949071207 cites W2029623390 @default.
- W2949071207 cites W2035017134 @default.
- W2949071207 cites W2036895652 @default.
- W2949071207 cites W2051166632 @default.
- W2949071207 cites W2055185462 @default.
- W2949071207 cites W2056086199 @default.
- W2949071207 cites W2057271193 @default.
- W2949071207 cites W2067638175 @default.
- W2949071207 cites W2070896819 @default.
- W2949071207 cites W2071789393 @default.
- W2949071207 cites W2075246537 @default.
- W2949071207 cites W2082534286 @default.
- W2949071207 cites W2088612061 @default.
- W2949071207 cites W2092977521 @default.
- W2949071207 cites W2096465161 @default.
- W2949071207 cites W2102304447 @default.
- W2949071207 cites W2103385435 @default.
- W2949071207 cites W2103569192 @default.
- W2949071207 cites W2112441454 @default.
- W2949071207 cites W2114289944 @default.
- W2949071207 cites W2121158863 @default.
- W2949071207 cites W2122340645 @default.
- W2949071207 cites W2124887618 @default.
- W2949071207 cites W2128100527 @default.
- W2949071207 cites W2136145671 @default.
- W2949071207 cites W2136452881 @default.
- W2949071207 cites W2139399606 @default.
- W2949071207 cites W2142386866 @default.
- W2949071207 cites W2147354571 @default.
- W2949071207 cites W2148802388 @default.
- W2949071207 cites W2149129820 @default.
- W2949071207 cites W2154523488 @default.
- W2949071207 cites W2156274673 @default.
- W2949071207 cites W2157160484 @default.
- W2949071207 cites W2157539385 @default.
- W2949071207 cites W2158235544 @default.
- W2949071207 cites W2165093251 @default.
- W2949071207 cites W2166422007 @default.
- W2949071207 cites W2166810745 @default.
- W2949071207 cites W2167321137 @default.
- W2949071207 cites W2169810552 @default.
- W2949071207 cites W2173001211 @default.
- W2949071207 cites W2272111630 @default.
- W2949071207 doi "https://doi.org/10.1186/s12864-016-3404-9" @default.
- W2949071207 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5209911" @default.
- W2949071207 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/28049418" @default.
- W2949071207 hasPublicationYear "2017" @default.
- W2949071207 type Work @default.
- W2949071207 sameAs 2949071207 @default.
- W2949071207 citedByCount "25" @default.
- W2949071207 countsByYear W29490712072017 @default.
- W2949071207 countsByYear W29490712072018 @default.
- W2949071207 countsByYear W29490712072019 @default.
- W2949071207 countsByYear W29490712072020 @default.
- W2949071207 countsByYear W29490712072021 @default.
- W2949071207 countsByYear W29490712072022 @default.
- W2949071207 countsByYear W29490712072023 @default.
- W2949071207 crossrefType "journal-article" @default.
- W2949071207 hasAuthorship W2949071207A5003109164 @default.
- W2949071207 hasAuthorship W2949071207A5025257753 @default.
- W2949071207 hasAuthorship W2949071207A5031469755 @default.
- W2949071207 hasAuthorship W2949071207A5039828476 @default.
- W2949071207 hasAuthorship W2949071207A5049418625 @default.
- W2949071207 hasAuthorship W2949071207A5052502603 @default.
- W2949071207 hasAuthorship W2949071207A5067701434 @default.
- W2949071207 hasAuthorship W2949071207A5072600261 @default.
- W2949071207 hasAuthorship W2949071207A5072898835 @default.
- W2949071207 hasAuthorship W2949071207A5089996702 @default.
- W2949071207 hasBestOaLocation W29490712071 @default.
- W2949071207 hasConcept C104317684 @default.
- W2949071207 hasConcept C105565629 @default.
- W2949071207 hasConcept C107397762 @default.
- W2949071207 hasConcept C111829193 @default.