Matches in SemOpenAlex for { <https://semopenalex.org/work/W2949077056> ?p ?o ?g. }
- W2949077056 endingPage "3832" @default.
- W2949077056 startingPage "3823" @default.
- W2949077056 abstract "Purpose The dosimetric accuracies of volumetric modulated arc therapy (VMAT) plans were predicted using plan complexity parameters via machine learning. Methods The dataset consisted of 600 cases of clinical VMAT plans from a single institution. The predictor variables ( n = 28) for each plan included complexity parameters, machine type, and photon beam energy. Dosimetric measurements were performed using a helical diode array (ArcCHECK), and the dosimetric accuracy of the passing rates for a 5% dose difference (DD5%) and gamma index of 3%/3 mm (γ3%/3 mm) were predicted using three machine learning models: regression tree analysis (RTA), multiple regression analysis (MRA), and neural networks (NNs). First, the prediction models were applied to 500 cases of the VMAT plans. Then, the dosimetric accuracy was predicted using each model for the remaining 100 cases (evaluation dataset). The error between the predicted and measured passing rates was evaluated. Results For the 600 cases, the mean ± standard deviation of the measured passing rates was 92.3% ± 9.1% and 96.8% ± 3.1% for DD5% and γ3%/3 mm, respectively. For the evaluation dataset, the mean ± standard deviation of the prediction errors for DD5% and γ3%/3 mm was 0.5% ± 3.0% and 0.6% ± 2.4% for RTA, 0.0% ± 2.9% and 0.5% ± 2.4% for MRA, and –0.2% ± 2.7% and –0.2% ± 2.1% for NN, respectively. Conclusions NNs performed slightly better than RTA and MRA in terms of prediction error. These findings may contribute to increasing the efficiency of patient‐specific quality‐assurance procedures." @default.
- W2949077056 created "2019-06-27" @default.
- W2949077056 creator A5015663060 @default.
- W2949077056 creator A5023608537 @default.
- W2949077056 creator A5024421698 @default.
- W2949077056 creator A5064136971 @default.
- W2949077056 creator A5064580921 @default.
- W2949077056 creator A5087874478 @default.
- W2949077056 creator A5091878958 @default.
- W2949077056 date "2019-07-09" @default.
- W2949077056 modified "2023-10-18" @default.
- W2949077056 title "Prediction of dosimetric accuracy for VMAT plans using plan complexity parameters via machine learning" @default.
- W2949077056 cites W1967022041 @default.
- W2949077056 cites W1972119299 @default.
- W2949077056 cites W1973715126 @default.
- W2949077056 cites W1975813232 @default.
- W2949077056 cites W1986351918 @default.
- W2949077056 cites W1987054640 @default.
- W2949077056 cites W1991393867 @default.
- W2949077056 cites W1999640747 @default.
- W2949077056 cites W2017016280 @default.
- W2949077056 cites W2050139244 @default.
- W2949077056 cites W2055073594 @default.
- W2949077056 cites W2093911683 @default.
- W2949077056 cites W2102593435 @default.
- W2949077056 cites W2103004421 @default.
- W2949077056 cites W2126956530 @default.
- W2949077056 cites W2161548576 @default.
- W2949077056 cites W2295556464 @default.
- W2949077056 cites W2344502927 @default.
- W2949077056 cites W2414064355 @default.
- W2949077056 cites W2472443435 @default.
- W2949077056 cites W2724900023 @default.
- W2949077056 cites W2749375587 @default.
- W2949077056 cites W2787894218 @default.
- W2949077056 cites W2790522724 @default.
- W2949077056 cites W2791042095 @default.
- W2949077056 cites W2794962342 @default.
- W2949077056 cites W2801898677 @default.
- W2949077056 cites W2887229430 @default.
- W2949077056 cites W2898197178 @default.
- W2949077056 cites W2904920584 @default.
- W2949077056 cites W2914621354 @default.
- W2949077056 cites W897725704 @default.
- W2949077056 doi "https://doi.org/10.1002/mp.13669" @default.
- W2949077056 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31222758" @default.
- W2949077056 hasPublicationYear "2019" @default.
- W2949077056 type Work @default.
- W2949077056 sameAs 2949077056 @default.
- W2949077056 citedByCount "36" @default.
- W2949077056 countsByYear W29490770562019 @default.
- W2949077056 countsByYear W29490770562020 @default.
- W2949077056 countsByYear W29490770562021 @default.
- W2949077056 countsByYear W29490770562022 @default.
- W2949077056 countsByYear W29490770562023 @default.
- W2949077056 crossrefType "journal-article" @default.
- W2949077056 hasAuthorship W2949077056A5015663060 @default.
- W2949077056 hasAuthorship W2949077056A5023608537 @default.
- W2949077056 hasAuthorship W2949077056A5024421698 @default.
- W2949077056 hasAuthorship W2949077056A5064136971 @default.
- W2949077056 hasAuthorship W2949077056A5064580921 @default.
- W2949077056 hasAuthorship W2949077056A5087874478 @default.
- W2949077056 hasAuthorship W2949077056A5091878958 @default.
- W2949077056 hasBestOaLocation W29490770561 @default.
- W2949077056 hasConcept C105795698 @default.
- W2949077056 hasConcept C106436119 @default.
- W2949077056 hasConcept C119857082 @default.
- W2949077056 hasConcept C139945424 @default.
- W2949077056 hasConcept C142724271 @default.
- W2949077056 hasConcept C152877465 @default.
- W2949077056 hasConcept C154945302 @default.
- W2949077056 hasConcept C22679943 @default.
- W2949077056 hasConcept C2778618615 @default.
- W2949077056 hasConcept C2989005 @default.
- W2949077056 hasConcept C33923547 @default.
- W2949077056 hasConcept C41008148 @default.
- W2949077056 hasConcept C48921125 @default.
- W2949077056 hasConcept C50644808 @default.
- W2949077056 hasConcept C71924100 @default.
- W2949077056 hasConcept C75088862 @default.
- W2949077056 hasConcept C83546350 @default.
- W2949077056 hasConceptScore W2949077056C105795698 @default.
- W2949077056 hasConceptScore W2949077056C106436119 @default.
- W2949077056 hasConceptScore W2949077056C119857082 @default.
- W2949077056 hasConceptScore W2949077056C139945424 @default.
- W2949077056 hasConceptScore W2949077056C142724271 @default.
- W2949077056 hasConceptScore W2949077056C152877465 @default.
- W2949077056 hasConceptScore W2949077056C154945302 @default.
- W2949077056 hasConceptScore W2949077056C22679943 @default.
- W2949077056 hasConceptScore W2949077056C2778618615 @default.
- W2949077056 hasConceptScore W2949077056C2989005 @default.
- W2949077056 hasConceptScore W2949077056C33923547 @default.
- W2949077056 hasConceptScore W2949077056C41008148 @default.
- W2949077056 hasConceptScore W2949077056C48921125 @default.
- W2949077056 hasConceptScore W2949077056C50644808 @default.
- W2949077056 hasConceptScore W2949077056C71924100 @default.
- W2949077056 hasConceptScore W2949077056C75088862 @default.
- W2949077056 hasConceptScore W2949077056C83546350 @default.