Matches in SemOpenAlex for { <https://semopenalex.org/work/W2949096641> ?p ?o ?g. }
Showing items 1 to 61 of
61
with 100 items per page.
- W2949096641 abstract "Recent years have witnessed a boundless growth in the field of deep learning. With the preferment in the field of deep learning, the task of object detection has become more exciting and challenging. Object detection focuses on detecting the presence of entire objects within a given image. Deep learning based object detection techniques have shown an efficacy to learn the object features directly from the data. The paper mainly focuses on providing a survey on various state-of-the-art deep learning based object detection techniques. The work also concentrates on providing an extensive comparison regarding the opportunities and obstacles faced by different object detection techniques. The paper concludes by identifying the future golden scopes for research in these fields." @default.
- W2949096641 created "2019-06-27" @default.
- W2949096641 creator A5014180321 @default.
- W2949096641 creator A5056092376 @default.
- W2949096641 date "2019-04-01" @default.
- W2949096641 modified "2023-10-06" @default.
- W2949096641 title "An Overview of Deep Learning Based Object Detection Techniques" @default.
- W2949096641 cites W1689909837 @default.
- W2949096641 cites W1932624639 @default.
- W2949096641 cites W2088049833 @default.
- W2949096641 cites W2102605133 @default.
- W2949096641 cites W2109255472 @default.
- W2949096641 cites W2113201641 @default.
- W2949096641 cites W2123099218 @default.
- W2949096641 cites W2164598857 @default.
- W2949096641 cites W2168356304 @default.
- W2949096641 cites W2538008885 @default.
- W2949096641 cites W2565639579 @default.
- W2949096641 cites W2604967609 @default.
- W2949096641 cites W2963037989 @default.
- W2949096641 doi "https://doi.org/10.1109/iciict1.2019.8741359" @default.
- W2949096641 hasPublicationYear "2019" @default.
- W2949096641 type Work @default.
- W2949096641 sameAs 2949096641 @default.
- W2949096641 citedByCount "13" @default.
- W2949096641 countsByYear W29490966412020 @default.
- W2949096641 countsByYear W29490966412021 @default.
- W2949096641 countsByYear W29490966412022 @default.
- W2949096641 countsByYear W29490966412023 @default.
- W2949096641 crossrefType "proceedings-article" @default.
- W2949096641 hasAuthorship W2949096641A5014180321 @default.
- W2949096641 hasAuthorship W2949096641A5056092376 @default.
- W2949096641 hasConcept C108583219 @default.
- W2949096641 hasConcept C119857082 @default.
- W2949096641 hasConcept C153180895 @default.
- W2949096641 hasConcept C154945302 @default.
- W2949096641 hasConcept C2776151529 @default.
- W2949096641 hasConcept C41008148 @default.
- W2949096641 hasConceptScore W2949096641C108583219 @default.
- W2949096641 hasConceptScore W2949096641C119857082 @default.
- W2949096641 hasConceptScore W2949096641C153180895 @default.
- W2949096641 hasConceptScore W2949096641C154945302 @default.
- W2949096641 hasConceptScore W2949096641C2776151529 @default.
- W2949096641 hasConceptScore W2949096641C41008148 @default.
- W2949096641 hasLocation W29490966411 @default.
- W2949096641 hasOpenAccess W2949096641 @default.
- W2949096641 hasPrimaryLocation W29490966411 @default.
- W2949096641 hasRelatedWork W2970686063 @default.
- W2949096641 hasRelatedWork W3014300295 @default.
- W2949096641 hasRelatedWork W3122799380 @default.
- W2949096641 hasRelatedWork W3201484345 @default.
- W2949096641 hasRelatedWork W4223943233 @default.
- W2949096641 hasRelatedWork W4225161397 @default.
- W2949096641 hasRelatedWork W4254103348 @default.
- W2949096641 hasRelatedWork W4285183766 @default.
- W2949096641 hasRelatedWork W4299487748 @default.
- W2949096641 hasRelatedWork W4309045103 @default.
- W2949096641 isParatext "false" @default.
- W2949096641 isRetracted "false" @default.
- W2949096641 magId "2949096641" @default.
- W2949096641 workType "article" @default.