Matches in SemOpenAlex for { <https://semopenalex.org/work/W2949111285> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W2949111285 abstract "We prove the $L^p$ boundedness of the circular maximal function on the Heisenberg group $mathbb{H}^1$ for $2<ple infty$. The proof is based on the square sum estimate associated with the $2times 2$ cone $|(xi_1',xi_2')|= |(xi_3',xi_4')| $ of the phase space arising from the vector fields $X_1,X_2,tX_3,partial/partial t$ on the Heisenberg group, rather than the $2times 1$ cone $ |(xi_1,xi_2)|= |xi_3|$ of the frequency space arising from $partial/partial x_1, partial/partial x_2, partial/partial t$ on the Euclidean space." @default.
- W2949111285 created "2019-06-27" @default.
- W2949111285 creator A5079183987 @default.
- W2949111285 date "2019-06-11" @default.
- W2949111285 modified "2023-10-16" @default.
- W2949111285 title "Circular maximal functions on the Heisenberg group" @default.
- W2949111285 cites W1584610719 @default.
- W2949111285 cites W1979653193 @default.
- W2949111285 cites W1990060164 @default.
- W2949111285 cites W1996045241 @default.
- W2949111285 cites W2056051178 @default.
- W2949111285 cites W2071240483 @default.
- W2949111285 cites W2784502987 @default.
- W2949111285 cites W2948716791 @default.
- W2949111285 doi "https://doi.org/10.48550/arxiv.1906.04627" @default.
- W2949111285 hasPublicationYear "2019" @default.
- W2949111285 type Work @default.
- W2949111285 sameAs 2949111285 @default.
- W2949111285 citedByCount "0" @default.
- W2949111285 crossrefType "posted-content" @default.
- W2949111285 hasAuthorship W2949111285A5079183987 @default.
- W2949111285 hasBestOaLocation W29491112851 @default.
- W2949111285 hasConcept C11413529 @default.
- W2949111285 hasConcept C114614502 @default.
- W2949111285 hasConcept C121332964 @default.
- W2949111285 hasConcept C127519595 @default.
- W2949111285 hasConcept C134306372 @default.
- W2949111285 hasConcept C138885662 @default.
- W2949111285 hasConcept C186450821 @default.
- W2949111285 hasConcept C2778572836 @default.
- W2949111285 hasConcept C2781311116 @default.
- W2949111285 hasConcept C30014739 @default.
- W2949111285 hasConcept C33923547 @default.
- W2949111285 hasConcept C37914503 @default.
- W2949111285 hasConcept C41895202 @default.
- W2949111285 hasConcept C62520636 @default.
- W2949111285 hasConceptScore W2949111285C11413529 @default.
- W2949111285 hasConceptScore W2949111285C114614502 @default.
- W2949111285 hasConceptScore W2949111285C121332964 @default.
- W2949111285 hasConceptScore W2949111285C127519595 @default.
- W2949111285 hasConceptScore W2949111285C134306372 @default.
- W2949111285 hasConceptScore W2949111285C138885662 @default.
- W2949111285 hasConceptScore W2949111285C186450821 @default.
- W2949111285 hasConceptScore W2949111285C2778572836 @default.
- W2949111285 hasConceptScore W2949111285C2781311116 @default.
- W2949111285 hasConceptScore W2949111285C30014739 @default.
- W2949111285 hasConceptScore W2949111285C33923547 @default.
- W2949111285 hasConceptScore W2949111285C37914503 @default.
- W2949111285 hasConceptScore W2949111285C41895202 @default.
- W2949111285 hasConceptScore W2949111285C62520636 @default.
- W2949111285 hasLocation W29491112851 @default.
- W2949111285 hasOpenAccess W2949111285 @default.
- W2949111285 hasPrimaryLocation W29491112851 @default.
- W2949111285 hasRelatedWork W1517572240 @default.
- W2949111285 hasRelatedWork W1978042415 @default.
- W2949111285 hasRelatedWork W2022890379 @default.
- W2949111285 hasRelatedWork W2169189571 @default.
- W2949111285 hasRelatedWork W2183038186 @default.
- W2949111285 hasRelatedWork W2370743565 @default.
- W2949111285 hasRelatedWork W2612181119 @default.
- W2949111285 hasRelatedWork W2949111285 @default.
- W2949111285 hasRelatedWork W3086542228 @default.
- W2949111285 hasRelatedWork W770316928 @default.
- W2949111285 isParatext "false" @default.
- W2949111285 isRetracted "false" @default.
- W2949111285 magId "2949111285" @default.
- W2949111285 workType "article" @default.