Matches in SemOpenAlex for { <https://semopenalex.org/work/W2949115101> ?p ?o ?g. }
- W2949115101 abstract "This paper introduces a network architecture to solve the structure-from-motion (SfM) problem via feature-metric bundle adjustment (BA), which explicitly enforces multi-view geometry constraints in the form of feature-metric error. The whole pipeline is differentiable so that the network can learn suitable features that make the BA problem more tractable. Furthermore, this work introduces a novel depth parameterization to recover dense per-pixel depth. The network first generates several basis depth maps according to the input image and optimizes the final depth as a linear combination of these basis depth maps via feature-metric BA. The basis depth maps generator is also learned via end-to-end training. The whole system nicely combines domain knowledge (i.e. hard-coded multi-view geometry constraints) and deep learning (i.e. feature learning and basis depth maps learning) to address the challenging dense SfM problem. Experiments on large scale real data prove the success of the proposed method." @default.
- W2949115101 created "2019-06-27" @default.
- W2949115101 creator A5029170925 @default.
- W2949115101 creator A5084953118 @default.
- W2949115101 date "2018-06-12" @default.
- W2949115101 modified "2023-09-26" @default.
- W2949115101 title "BA-Net: Dense Bundle Adjustment Network" @default.
- W2949115101 cites W1484371059 @default.
- W2949115101 cites W1552779774 @default.
- W2949115101 cites W1686810756 @default.
- W2949115101 cites W1885185971 @default.
- W2949115101 cites W1905829557 @default.
- W2949115101 cites W1986528120 @default.
- W2949115101 cites W1992178727 @default.
- W2949115101 cites W2001790138 @default.
- W2949115101 cites W2091226544 @default.
- W2949115101 cites W2100388501 @default.
- W2949115101 cites W2102481828 @default.
- W2949115101 cites W2109635530 @default.
- W2949115101 cites W2124313187 @default.
- W2949115101 cites W2130975789 @default.
- W2949115101 cites W2132947399 @default.
- W2949115101 cites W2137825550 @default.
- W2949115101 cites W2150066425 @default.
- W2949115101 cites W2151996626 @default.
- W2949115101 cites W2158211626 @default.
- W2949115101 cites W2163446794 @default.
- W2949115101 cites W2163605009 @default.
- W2949115101 cites W2165114467 @default.
- W2949115101 cites W2168676389 @default.
- W2949115101 cites W2171740948 @default.
- W2949115101 cites W2187061624 @default.
- W2949115101 cites W2190691619 @default.
- W2949115101 cites W2194775991 @default.
- W2949115101 cites W2268880754 @default.
- W2949115101 cites W2336961836 @default.
- W2949115101 cites W2464674920 @default.
- W2949115101 cites W2471962767 @default.
- W2949115101 cites W2474281075 @default.
- W2949115101 cites W2489710028 @default.
- W2949115101 cites W2520707372 @default.
- W2949115101 cites W2560474170 @default.
- W2949115101 cites W2561074213 @default.
- W2949115101 cites W2565639579 @default.
- W2949115101 cites W2605938684 @default.
- W2949115101 cites W2606794968 @default.
- W2949115101 cites W2609883120 @default.
- W2949115101 cites W2830339951 @default.
- W2949115101 cites W2895289727 @default.
- W2949115101 cites W2950891598 @default.
- W2949115101 cites W2951179855 @default.
- W2949115101 cites W2962850830 @default.
- W2949115101 cites W2963106865 @default.
- W2949115101 cites W2963446712 @default.
- W2949115101 cites W2963591054 @default.
- W2949115101 cites W2963654727 @default.
- W2949115101 cites W2963706662 @default.
- W2949115101 cites W2963970238 @default.
- W2949115101 cites W2964121744 @default.
- W2949115101 cites W2964235957 @default.
- W2949115101 cites W3029645440 @default.
- W2949115101 cites W612478963 @default.
- W2949115101 doi "https://doi.org/10.48550/arxiv.1806.04807" @default.
- W2949115101 hasPublicationYear "2018" @default.
- W2949115101 type Work @default.
- W2949115101 sameAs 2949115101 @default.
- W2949115101 citedByCount "38" @default.
- W2949115101 countsByYear W29491151012018 @default.
- W2949115101 countsByYear W29491151012019 @default.
- W2949115101 countsByYear W29491151012020 @default.
- W2949115101 countsByYear W29491151012021 @default.
- W2949115101 crossrefType "posted-content" @default.
- W2949115101 hasAuthorship W2949115101A5029170925 @default.
- W2949115101 hasAuthorship W2949115101A5084953118 @default.
- W2949115101 hasBestOaLocation W29491151011 @default.
- W2949115101 hasConcept C104114177 @default.
- W2949115101 hasConcept C11413529 @default.
- W2949115101 hasConcept C115961682 @default.
- W2949115101 hasConcept C121332964 @default.
- W2949115101 hasConcept C12426560 @default.
- W2949115101 hasConcept C134306372 @default.
- W2949115101 hasConcept C138885662 @default.
- W2949115101 hasConcept C146159030 @default.
- W2949115101 hasConcept C153180895 @default.
- W2949115101 hasConcept C154945302 @default.
- W2949115101 hasConcept C159985019 @default.
- W2949115101 hasConcept C162324750 @default.
- W2949115101 hasConcept C163258240 @default.
- W2949115101 hasConcept C176217482 @default.
- W2949115101 hasConcept C179458375 @default.
- W2949115101 hasConcept C192562407 @default.
- W2949115101 hasConcept C199360897 @default.
- W2949115101 hasConcept C202615002 @default.
- W2949115101 hasConcept C21547014 @default.
- W2949115101 hasConcept C2524010 @default.
- W2949115101 hasConcept C2776401178 @default.
- W2949115101 hasConcept C2778134712 @default.
- W2949115101 hasConcept C2780992000 @default.
- W2949115101 hasConcept C33923547 @default.
- W2949115101 hasConcept C41008148 @default.