Matches in SemOpenAlex for { <https://semopenalex.org/work/W2949144948> ?p ?o ?g. }
- W2949144948 abstract "One major goal of vision is to infer physical models of objects, surfaces, and their layout from sensors. In this paper, we aim to interpret indoor scenes from one RGBD image. Our representation encodes the layout of orthogonal walls and the extent of objects, modeled with CAD-like 3D shapes. We parse both the visible and occluded portions of the scene and all observable objects, producing a complete 3D parse. Such a scene interpretation is useful for robotics and visual reasoning, but difficult to produce due to the well-known challenge of segmentation, the high degree of occlusion, and the diversity of objects in indoor scenes. We take a data-driven approach, generating sets of potential object regions, matching to regions in training images, and transferring and aligning associated 3D models while encouraging fit to observations and spatial consistency. We use support inference to aid interpretation and propose a retrieval scheme that uses convolutional neural networks (CNNs) to classify regions and retrieve objects with similar shapes. We demonstrate the performance of our method on our newly annotated NYUd v2 dataset with detailed 3D shapes." @default.
- W2949144948 created "2019-06-27" @default.
- W2949144948 creator A5007775697 @default.
- W2949144948 creator A5009682734 @default.
- W2949144948 creator A5038747486 @default.
- W2949144948 creator A5070011429 @default.
- W2949144948 date "2017-10-25" @default.
- W2949144948 modified "2023-10-16" @default.
- W2949144948 title "Complete 3D Scene Parsing from an RGBD Image" @default.
- W2949144948 cites W116751493 @default.
- W2949144948 cites W125693051 @default.
- W2949144948 cites W1481823314 @default.
- W2949144948 cites W1519402791 @default.
- W2949144948 cites W1522301498 @default.
- W2949144948 cites W1542723449 @default.
- W2949144948 cites W1545195129 @default.
- W2949144948 cites W1555385401 @default.
- W2949144948 cites W1565402342 @default.
- W2949144948 cites W1571998429 @default.
- W2949144948 cites W1610356397 @default.
- W2949144948 cites W1768450320 @default.
- W2949144948 cites W1818727054 @default.
- W2949144948 cites W1903029394 @default.
- W2949144948 cites W1920022804 @default.
- W2949144948 cites W1923184257 @default.
- W2949144948 cites W1927784829 @default.
- W2949144948 cites W1949568868 @default.
- W2949144948 cites W2005175937 @default.
- W2949144948 cites W2010625607 @default.
- W2949144948 cites W2066813062 @default.
- W2949144948 cites W2067912884 @default.
- W2949144948 cites W2068397385 @default.
- W2949144948 cites W2071634722 @default.
- W2949144948 cites W2083347703 @default.
- W2949144948 cites W2109443835 @default.
- W2949144948 cites W2112255529 @default.
- W2949144948 cites W2116851763 @default.
- W2949144948 cites W2118824402 @default.
- W2949144948 cites W2121339428 @default.
- W2949144948 cites W2121660792 @default.
- W2949144948 cites W2129587342 @default.
- W2949144948 cites W2146352414 @default.
- W2949144948 cites W2152571752 @default.
- W2949144948 cites W2154880882 @default.
- W2949144948 cites W2174266739 @default.
- W2949144948 cites W2190691619 @default.
- W2949144948 cites W2199215860 @default.
- W2949144948 cites W2221101993 @default.
- W2949144948 cites W2229637417 @default.
- W2949144948 cites W2297454107 @default.
- W2949144948 cites W2402140145 @default.
- W2949144948 cites W2439650069 @default.
- W2949144948 cites W2519379752 @default.
- W2949144948 cites W2534523274 @default.
- W2949144948 cites W2536043048 @default.
- W2949144948 cites W2557465155 @default.
- W2949144948 cites W2950493473 @default.
- W2949144948 cites W2950612966 @default.
- W2949144948 cites W331766535 @default.
- W2949144948 cites W566730006 @default.
- W2949144948 doi "https://doi.org/10.48550/arxiv.1710.09490" @default.
- W2949144948 hasPublicationYear "2017" @default.
- W2949144948 type Work @default.
- W2949144948 sameAs 2949144948 @default.
- W2949144948 citedByCount "1" @default.
- W2949144948 countsByYear W29491449482018 @default.
- W2949144948 crossrefType "posted-content" @default.
- W2949144948 hasAuthorship W2949144948A5007775697 @default.
- W2949144948 hasAuthorship W2949144948A5009682734 @default.
- W2949144948 hasAuthorship W2949144948A5038747486 @default.
- W2949144948 hasAuthorship W2949144948A5070011429 @default.
- W2949144948 hasBestOaLocation W29491449481 @default.
- W2949144948 hasConcept C105795698 @default.
- W2949144948 hasConcept C153180895 @default.
- W2949144948 hasConcept C154945302 @default.
- W2949144948 hasConcept C165064840 @default.
- W2949144948 hasConcept C17744445 @default.
- W2949144948 hasConcept C186644900 @default.
- W2949144948 hasConcept C199360897 @default.
- W2949144948 hasConcept C199539241 @default.
- W2949144948 hasConcept C2776214188 @default.
- W2949144948 hasConcept C2776359362 @default.
- W2949144948 hasConcept C2776436953 @default.
- W2949144948 hasConcept C2781238097 @default.
- W2949144948 hasConcept C31972630 @default.
- W2949144948 hasConcept C33923547 @default.
- W2949144948 hasConcept C41008148 @default.
- W2949144948 hasConcept C527412718 @default.
- W2949144948 hasConcept C81363708 @default.
- W2949144948 hasConcept C89600930 @default.
- W2949144948 hasConcept C94625758 @default.
- W2949144948 hasConceptScore W2949144948C105795698 @default.
- W2949144948 hasConceptScore W2949144948C153180895 @default.
- W2949144948 hasConceptScore W2949144948C154945302 @default.
- W2949144948 hasConceptScore W2949144948C165064840 @default.
- W2949144948 hasConceptScore W2949144948C17744445 @default.
- W2949144948 hasConceptScore W2949144948C186644900 @default.
- W2949144948 hasConceptScore W2949144948C199360897 @default.
- W2949144948 hasConceptScore W2949144948C199539241 @default.
- W2949144948 hasConceptScore W2949144948C2776214188 @default.