Matches in SemOpenAlex for { <https://semopenalex.org/work/W2949145890> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W2949145890 abstract "Meta-analysis represents an approach of synthesizing many independent data sets, and is useful in situations when abundant literature provides no conclusive evidence. Besides the quality of the research itself, the value of an individual study for meta-analysis depends to the large extent also on the quality of data presentation. The literature based on carabid beetles (Coleoptera: Carabidae) as the study is enormous, therefore there is a great potential for the use in meta-analyses. In this paper I put together some notes which arose during my work on meta-analysis focused on the effects of field and crop management on populations of carabid beetles inside the crop fields of Europe and America north of Mexico. The aim of this contribution is to provide a set of recommendations which may potentially improve the use of each individual paper in future meta-analyses, and thus increase the impact of the original paper as well as the generality of conclusions drawn from future meta-analyses, hence based on larger sample size. Be accurate in describing the treatments. For example, “low” and “high intensity of management” is not enough. Mention also details that are constant across treatments, but may still provide useful information. E.g. “practice usual for the area” is not enough. Be precise with describing spatio-temporal structure in the study. Provide redundant information so everyone can check if he/she understood well the hierarchy of the experiment and the number of replications associated with each stratum. A scheme may be useful. Report the grand totals as well as treatment totals for both “abundance” and species richness. Text, tables or supplementary materials is preferred. If using mean values, always make it clear what is the number of replicates and provide standard errors. But, remember that total or treatment species richness cannot be reconstructed from the mean! Be explicit in stating what the means represent, also in figures. Expressions like “Mean abundance” are not enough. Provide species lists with the greatest resolution possible. Most journals allow for supplementary materials where this information can be provided. Remember that data can also be extracted from figures. Provide high resolution and accurate figures. For example, large data points on a line make data extraction difficult. Be accurate in describing the treatments. For example, “low” and “high intensity of management” is not enough. Mention also details that are constant across treatments, but may still provide useful information. E.g. “practice usual for the area” is not enough. Be precise with describing spatio-temporal structure in the study. Provide redundant information so everyone can check if he/she understood well the hierarchy of the experiment and the number of replications associated with each stratum. A scheme may be useful. Report the grand totals as well as treatment totals for both “abundance” and species richness. Text, tables or supplementary materials is preferred. If using mean values, always make it clear what is the number of replicates and provide standard errors. But, remember that total or treatment species richness cannot be reconstructed from the mean! Be explicit in stating what the means represent, also in figures. Expressions like “Mean abundance” are not enough. Provide species lists with the greatest resolution possible. Most journals allow for supplementary materials where this information can be provided. Remember that data can also be extracted from figures. Provide high resolution and accurate figures. For example, large data points on a line make data extraction difficult. With little extra effort during the preparation phase, the impact of your paper and the use of your data may considerably increase in the future." @default.
- W2949145890 created "2019-06-27" @default.
- W2949145890 creator A5020289617 @default.
- W2949145890 date "2019-06-18" @default.
- W2949145890 modified "2023-09-25" @default.
- W2949145890 title "How to make a meta-analyst happy – what to report in your studies and how" @default.
- W2949145890 doi "https://doi.org/10.3897/aca.2.e37400" @default.
- W2949145890 hasPublicationYear "2019" @default.
- W2949145890 type Work @default.
- W2949145890 sameAs 2949145890 @default.
- W2949145890 citedByCount "1" @default.
- W2949145890 countsByYear W29491458902022 @default.
- W2949145890 crossrefType "journal-article" @default.
- W2949145890 hasAuthorship W2949145890A5020289617 @default.
- W2949145890 hasBestOaLocation W29491458901 @default.
- W2949145890 hasConcept C111472728 @default.
- W2949145890 hasConcept C126322002 @default.
- W2949145890 hasConcept C138885662 @default.
- W2949145890 hasConcept C15744967 @default.
- W2949145890 hasConcept C162324750 @default.
- W2949145890 hasConcept C177264268 @default.
- W2949145890 hasConcept C185592680 @default.
- W2949145890 hasConcept C198531522 @default.
- W2949145890 hasConcept C199360897 @default.
- W2949145890 hasConcept C202444582 @default.
- W2949145890 hasConcept C2522767166 @default.
- W2949145890 hasConcept C2779530757 @default.
- W2949145890 hasConcept C2780767217 @default.
- W2949145890 hasConcept C31170391 @default.
- W2949145890 hasConcept C33923547 @default.
- W2949145890 hasConcept C34447519 @default.
- W2949145890 hasConcept C41008148 @default.
- W2949145890 hasConcept C43617362 @default.
- W2949145890 hasConcept C542102704 @default.
- W2949145890 hasConcept C71924100 @default.
- W2949145890 hasConcept C95190672 @default.
- W2949145890 hasConcept C9652623 @default.
- W2949145890 hasConceptScore W2949145890C111472728 @default.
- W2949145890 hasConceptScore W2949145890C126322002 @default.
- W2949145890 hasConceptScore W2949145890C138885662 @default.
- W2949145890 hasConceptScore W2949145890C15744967 @default.
- W2949145890 hasConceptScore W2949145890C162324750 @default.
- W2949145890 hasConceptScore W2949145890C177264268 @default.
- W2949145890 hasConceptScore W2949145890C185592680 @default.
- W2949145890 hasConceptScore W2949145890C198531522 @default.
- W2949145890 hasConceptScore W2949145890C199360897 @default.
- W2949145890 hasConceptScore W2949145890C202444582 @default.
- W2949145890 hasConceptScore W2949145890C2522767166 @default.
- W2949145890 hasConceptScore W2949145890C2779530757 @default.
- W2949145890 hasConceptScore W2949145890C2780767217 @default.
- W2949145890 hasConceptScore W2949145890C31170391 @default.
- W2949145890 hasConceptScore W2949145890C33923547 @default.
- W2949145890 hasConceptScore W2949145890C34447519 @default.
- W2949145890 hasConceptScore W2949145890C41008148 @default.
- W2949145890 hasConceptScore W2949145890C43617362 @default.
- W2949145890 hasConceptScore W2949145890C542102704 @default.
- W2949145890 hasConceptScore W2949145890C71924100 @default.
- W2949145890 hasConceptScore W2949145890C95190672 @default.
- W2949145890 hasConceptScore W2949145890C9652623 @default.
- W2949145890 hasLocation W29491458901 @default.
- W2949145890 hasLocation W29491458902 @default.
- W2949145890 hasOpenAccess W2949145890 @default.
- W2949145890 hasPrimaryLocation W29491458901 @default.
- W2949145890 hasRelatedWork W1675207684 @default.
- W2949145890 hasRelatedWork W2085679424 @default.
- W2949145890 hasRelatedWork W2108337921 @default.
- W2949145890 hasRelatedWork W2352957847 @default.
- W2949145890 hasRelatedWork W2901683929 @default.
- W2949145890 hasRelatedWork W3102606356 @default.
- W2949145890 hasRelatedWork W4281642025 @default.
- W2949145890 hasRelatedWork W4288700165 @default.
- W2949145890 hasRelatedWork W4313547623 @default.
- W2949145890 hasRelatedWork W2013158554 @default.
- W2949145890 hasVolume "2" @default.
- W2949145890 isParatext "false" @default.
- W2949145890 isRetracted "false" @default.
- W2949145890 magId "2949145890" @default.
- W2949145890 workType "article" @default.