Matches in SemOpenAlex for { <https://semopenalex.org/work/W2949159221> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W2949159221 abstract "Authorship attribution refers to the task of automatically determining the author based on a given sample of text. It is a problem with a long history and has a wide range of application. Building author profiles using language models is one of the most successful methods to automate this task. New language modeling methods based on neural networks alleviate the curse of dimensionality and usually outperform conventional N-gram methods. However, there have not been much research applying them to authorship attribution. In this paper, we present a novel setup of a Neural Network Language Model (NNLM) and apply it to a database of text samples from different authors. We investigate how the NNLM performs on a task with moderate author set size and relatively limited training and test data, and how the topics of the text samples affect the accuracy. NNLM achieves nearly 2.5% reduction in perplexity, a measurement of fitness of a trained language model to the test data. Given 5 random test sentences, it also increases the author classification accuracy by 3.43% on average, compared with the N-gram methods using SRILM tools. An open source implementation of our methodology is freely available at https://github.com/zge/authorship-attribution/." @default.
- W2949159221 created "2019-06-27" @default.
- W2949159221 creator A5033386225 @default.
- W2949159221 creator A5045558269 @default.
- W2949159221 date "2016-02-23" @default.
- W2949159221 modified "2023-09-23" @default.
- W2949159221 title "Domain Specific Author Attribution Based on Feedforward Neural Network Language Models" @default.
- W2949159221 cites W1423339008 @default.
- W2949159221 cites W1602390003 @default.
- W2949159221 cites W1631260214 @default.
- W2949159221 cites W179875071 @default.
- W2949159221 cites W1981745473 @default.
- W2949159221 cites W2045170535 @default.
- W2949159221 cites W2072828027 @default.
- W2949159221 cites W2091812280 @default.
- W2949159221 cites W2108557656 @default.
- W2949159221 cites W2132339004 @default.
- W2949159221 cites W2159642183 @default.
- W2949159221 cites W2160815625 @default.
- W2949159221 cites W2187946878 @default.
- W2949159221 cites W2795674440 @default.
- W2949159221 cites W2912780347 @default.
- W2949159221 doi "https://doi.org/10.48550/arxiv.1602.07393" @default.
- W2949159221 hasPublicationYear "2016" @default.
- W2949159221 type Work @default.
- W2949159221 sameAs 2949159221 @default.
- W2949159221 citedByCount "0" @default.
- W2949159221 crossrefType "posted-content" @default.
- W2949159221 hasAuthorship W2949159221A5033386225 @default.
- W2949159221 hasAuthorship W2949159221A5045558269 @default.
- W2949159221 hasBestOaLocation W29491592211 @default.
- W2949159221 hasConcept C100279451 @default.
- W2949159221 hasConcept C119857082 @default.
- W2949159221 hasConcept C137293760 @default.
- W2949159221 hasConcept C154945302 @default.
- W2949159221 hasConcept C162324750 @default.
- W2949159221 hasConcept C169903167 @default.
- W2949159221 hasConcept C177264268 @default.
- W2949159221 hasConcept C185592680 @default.
- W2949159221 hasConcept C187736073 @default.
- W2949159221 hasConcept C198531522 @default.
- W2949159221 hasConcept C199360897 @default.
- W2949159221 hasConcept C204321447 @default.
- W2949159221 hasConcept C2780451532 @default.
- W2949159221 hasConcept C41008148 @default.
- W2949159221 hasConcept C43617362 @default.
- W2949159221 hasConcept C50644808 @default.
- W2949159221 hasConceptScore W2949159221C100279451 @default.
- W2949159221 hasConceptScore W2949159221C119857082 @default.
- W2949159221 hasConceptScore W2949159221C137293760 @default.
- W2949159221 hasConceptScore W2949159221C154945302 @default.
- W2949159221 hasConceptScore W2949159221C162324750 @default.
- W2949159221 hasConceptScore W2949159221C169903167 @default.
- W2949159221 hasConceptScore W2949159221C177264268 @default.
- W2949159221 hasConceptScore W2949159221C185592680 @default.
- W2949159221 hasConceptScore W2949159221C187736073 @default.
- W2949159221 hasConceptScore W2949159221C198531522 @default.
- W2949159221 hasConceptScore W2949159221C199360897 @default.
- W2949159221 hasConceptScore W2949159221C204321447 @default.
- W2949159221 hasConceptScore W2949159221C2780451532 @default.
- W2949159221 hasConceptScore W2949159221C41008148 @default.
- W2949159221 hasConceptScore W2949159221C43617362 @default.
- W2949159221 hasConceptScore W2949159221C50644808 @default.
- W2949159221 hasLocation W29491592211 @default.
- W2949159221 hasOpenAccess W2949159221 @default.
- W2949159221 hasPrimaryLocation W29491592211 @default.
- W2949159221 hasRelatedWork W1772447446 @default.
- W2949159221 hasRelatedWork W1989705153 @default.
- W2949159221 hasRelatedWork W2121181484 @default.
- W2949159221 hasRelatedWork W2131111393 @default.
- W2949159221 hasRelatedWork W2410936271 @default.
- W2949159221 hasRelatedWork W2496228846 @default.
- W2949159221 hasRelatedWork W2896411932 @default.
- W2949159221 hasRelatedWork W2996568036 @default.
- W2949159221 hasRelatedWork W3107474891 @default.
- W2949159221 hasRelatedWork W59929963 @default.
- W2949159221 isParatext "false" @default.
- W2949159221 isRetracted "false" @default.
- W2949159221 magId "2949159221" @default.
- W2949159221 workType "article" @default.