Matches in SemOpenAlex for { <https://semopenalex.org/work/W2949166055> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W2949166055 abstract "Friction stir welding is a solid-state welding process. The technology is used in high precision applications such as aerospace. Thus, monitoring the weld quality is highly relevant for detecting inaccurate welds. Various studies have shown a significant dependence of the weld quality on the welding speed and the rotational speed of the tool. Frequently, an unsuitable setting of these parameters can be detected by visual examination of the resulting surface defects, such as increased flash formation or surface galling. The visual inspection for these defects is often conducted manually and is therefore associated with increased costs and personnel effort. In this work, a deep learning approach to automatically detect irregularities on the weld surface is introduced. For training and testing of the artificial neural networks, 112 welds with a total length of 18.4 m were produced. Color images of the welds were taken using a digital camera and images of the weld surface topography were made with a three-dimensional profilometer. The approach consisted of a two-step procedure. First, an object detector using a neural network localized the friction stir weld on the image. Second, a neural network classified the surface properties of the weld seam. The object detector localized the friction stir welds with an intersection over union up to 89.5%. The best result in classifying the surface properties was achieved by using the topography images. Thereby, a classification accuracy of 92. % was reached by the convolutional neural network DenseNet-121. The results are the basis for the future development of an inline quality monitoring and parameter control method for friction stir welding." @default.
- W2949166055 created "2019-06-27" @default.
- W2949166055 creator A5001294062 @default.
- W2949166055 creator A5053972261 @default.
- W2949166055 creator A5054545096 @default.
- W2949166055 creator A5061239987 @default.
- W2949166055 creator A5068948118 @default.
- W2949166055 date "2019-06-21" @default.
- W2949166055 modified "2023-10-10" @default.
- W2949166055 title "Automated visual inspection of friction stir welds: a deep learning approach" @default.
- W2949166055 cites W139038249 @default.
- W2949166055 cites W178790892 @default.
- W2949166055 cites W1812637595 @default.
- W2949166055 cites W1887783691 @default.
- W2949166055 cites W2037227137 @default.
- W2949166055 cites W2073255816 @default.
- W2949166055 cites W2108598243 @default.
- W2949166055 cites W2112796928 @default.
- W2949166055 cites W2331055734 @default.
- W2949166055 cites W2520200494 @default.
- W2949166055 cites W2622340120 @default.
- W2949166055 cites W2884514429 @default.
- W2949166055 cites W2900419214 @default.
- W2949166055 cites W2921555321 @default.
- W2949166055 cites W2963037989 @default.
- W2949166055 cites W2963144738 @default.
- W2949166055 cites W2963446712 @default.
- W2949166055 cites W4233210060 @default.
- W2949166055 cites W4233725865 @default.
- W2949166055 cites W4241787947 @default.
- W2949166055 cites W607748843 @default.
- W2949166055 doi "https://doi.org/10.1117/12.2525947" @default.
- W2949166055 hasPublicationYear "2019" @default.
- W2949166055 type Work @default.
- W2949166055 sameAs 2949166055 @default.
- W2949166055 citedByCount "6" @default.
- W2949166055 countsByYear W29491660552020 @default.
- W2949166055 countsByYear W29491660552021 @default.
- W2949166055 countsByYear W29491660552022 @default.
- W2949166055 crossrefType "proceedings-article" @default.
- W2949166055 hasAuthorship W2949166055A5001294062 @default.
- W2949166055 hasAuthorship W2949166055A5053972261 @default.
- W2949166055 hasAuthorship W2949166055A5054545096 @default.
- W2949166055 hasAuthorship W2949166055A5061239987 @default.
- W2949166055 hasAuthorship W2949166055A5068948118 @default.
- W2949166055 hasConcept C111919701 @default.
- W2949166055 hasConcept C127413603 @default.
- W2949166055 hasConcept C146978453 @default.
- W2949166055 hasConcept C154945302 @default.
- W2949166055 hasConcept C168820333 @default.
- W2949166055 hasConcept C191897082 @default.
- W2949166055 hasConcept C192562407 @default.
- W2949166055 hasConcept C19474535 @default.
- W2949166055 hasConcept C31972630 @default.
- W2949166055 hasConcept C40367268 @default.
- W2949166055 hasConcept C41008148 @default.
- W2949166055 hasConcept C50644808 @default.
- W2949166055 hasConcept C64543145 @default.
- W2949166055 hasConcept C71039073 @default.
- W2949166055 hasConcept C79261456 @default.
- W2949166055 hasConcept C81363708 @default.
- W2949166055 hasConcept C98045186 @default.
- W2949166055 hasConceptScore W2949166055C111919701 @default.
- W2949166055 hasConceptScore W2949166055C127413603 @default.
- W2949166055 hasConceptScore W2949166055C146978453 @default.
- W2949166055 hasConceptScore W2949166055C154945302 @default.
- W2949166055 hasConceptScore W2949166055C168820333 @default.
- W2949166055 hasConceptScore W2949166055C191897082 @default.
- W2949166055 hasConceptScore W2949166055C192562407 @default.
- W2949166055 hasConceptScore W2949166055C19474535 @default.
- W2949166055 hasConceptScore W2949166055C31972630 @default.
- W2949166055 hasConceptScore W2949166055C40367268 @default.
- W2949166055 hasConceptScore W2949166055C41008148 @default.
- W2949166055 hasConceptScore W2949166055C50644808 @default.
- W2949166055 hasConceptScore W2949166055C64543145 @default.
- W2949166055 hasConceptScore W2949166055C71039073 @default.
- W2949166055 hasConceptScore W2949166055C79261456 @default.
- W2949166055 hasConceptScore W2949166055C81363708 @default.
- W2949166055 hasConceptScore W2949166055C98045186 @default.
- W2949166055 hasLocation W29491660551 @default.
- W2949166055 hasOpenAccess W2949166055 @default.
- W2949166055 hasPrimaryLocation W29491660551 @default.
- W2949166055 hasRelatedWork W2290909887 @default.
- W2949166055 hasRelatedWork W2363175640 @default.
- W2949166055 hasRelatedWork W2393116105 @default.
- W2949166055 hasRelatedWork W2394038673 @default.
- W2949166055 hasRelatedWork W2569317639 @default.
- W2949166055 hasRelatedWork W2899084033 @default.
- W2949166055 hasRelatedWork W2968004781 @default.
- W2949166055 hasRelatedWork W3088754415 @default.
- W2949166055 hasRelatedWork W4296445454 @default.
- W2949166055 hasRelatedWork W4321463918 @default.
- W2949166055 isParatext "false" @default.
- W2949166055 isRetracted "false" @default.
- W2949166055 magId "2949166055" @default.
- W2949166055 workType "article" @default.