Matches in SemOpenAlex for { <https://semopenalex.org/work/W2949205180> ?p ?o ?g. }
- W2949205180 endingPage "e0007386" @default.
- W2949205180 startingPage "e0007386" @default.
- W2949205180 abstract "Background Identifying and eliminating snail habitats is the key measure for schistosomiasis control, critical for the nationwide strategy of eliminating schistosomiasis in China. Here, our aim was to construct a new analytical framework to predict high-risk snail habitats based on a large sample field survey for Oncomelania hupensis, providing guidance for schistosomiasis control and prevention. Methodology/Principal findings Ten ecological models were constructed based on the occurrence data of Oncomelania hupensis and a range of variables in the Poyang Lake region of China, including four presence-only models (Maximum Entropy Models, Genetic Algorithm for rule-set Production, Bioclim and Domain) and six presence-absence models (Generalized Linear Models, Multivariate Adaptive Regression Splines, Flexible Discriminant Analysis, as well as machine algorithmic models–Random Forest, Classification Tree Analysis, Generalized Boosted Model), to predict high-risk snail habitats. Based on overall predictive performance, we found Presence-absence models outperformed the presence-only models and the models based on machine learning algorithms of classification trees showed the highest accuracy. The highest risk was located in the watershed of the River Fu in Yugan County, as well as the watershed of the River Gan and the River Xiu in Xingzi County, covering an area of 52.3 km2. The other high-risk areas for both snail habitats and schistosomiasis were mainly concentrated at the confluence of Poyang Lake and its five main tributaries. Conclusions/Significance This study developed a new distribution map of snail habitats in the Poyang Lake region, and demonstrated the critical role of ecological models in risk assessment to directing local field investigation of Oncomelania hupensis. Moreover, this study could also contribute to the development of effective strategies to prevent further spread of schistosomiasis from endemic areas to non-endemic areas." @default.
- W2949205180 created "2019-06-27" @default.
- W2949205180 creator A5001521698 @default.
- W2949205180 creator A5010430600 @default.
- W2949205180 creator A5010528769 @default.
- W2949205180 creator A5038942757 @default.
- W2949205180 creator A5044139442 @default.
- W2949205180 creator A5046341550 @default.
- W2949205180 creator A5048342605 @default.
- W2949205180 creator A5050894971 @default.
- W2949205180 creator A5071672663 @default.
- W2949205180 creator A5073235870 @default.
- W2949205180 creator A5076563529 @default.
- W2949205180 creator A5086965113 @default.
- W2949205180 date "2019-06-17" @default.
- W2949205180 modified "2023-10-13" @default.
- W2949205180 title "Identification of high-risk habitats of Oncomelania hupensis, the intermediate host of schistosoma japonium in the Poyang Lake region, China: A spatial and ecological analysis" @default.
- W2949205180 cites W179804221 @default.
- W2949205180 cites W1975652353 @default.
- W2949205180 cites W2000550811 @default.
- W2949205180 cites W2002758482 @default.
- W2949205180 cites W2010275726 @default.
- W2949205180 cites W2016300203 @default.
- W2949205180 cites W2038398663 @default.
- W2949205180 cites W2064390479 @default.
- W2949205180 cites W2071506605 @default.
- W2949205180 cites W2079378460 @default.
- W2949205180 cites W2089454337 @default.
- W2949205180 cites W2109113184 @default.
- W2949205180 cites W2112315008 @default.
- W2949205180 cites W2118706433 @default.
- W2949205180 cites W2119684825 @default.
- W2949205180 cites W2129913788 @default.
- W2949205180 cites W2131850808 @default.
- W2949205180 cites W2136017883 @default.
- W2949205180 cites W2160278056 @default.
- W2949205180 cites W2171991832 @default.
- W2949205180 cites W2185381800 @default.
- W2949205180 cites W2591682040 @default.
- W2949205180 cites W2971941525 @default.
- W2949205180 cites W3024121126 @default.
- W2949205180 doi "https://doi.org/10.1371/journal.pntd.0007386" @default.
- W2949205180 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6597197" @default.
- W2949205180 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31206514" @default.
- W2949205180 hasPublicationYear "2019" @default.
- W2949205180 type Work @default.
- W2949205180 sameAs 2949205180 @default.
- W2949205180 citedByCount "13" @default.
- W2949205180 countsByYear W29492051802020 @default.
- W2949205180 countsByYear W29492051802021 @default.
- W2949205180 countsByYear W29492051802022 @default.
- W2949205180 countsByYear W29492051802023 @default.
- W2949205180 crossrefType "journal-article" @default.
- W2949205180 hasAuthorship W2949205180A5001521698 @default.
- W2949205180 hasAuthorship W2949205180A5010430600 @default.
- W2949205180 hasAuthorship W2949205180A5010528769 @default.
- W2949205180 hasAuthorship W2949205180A5038942757 @default.
- W2949205180 hasAuthorship W2949205180A5044139442 @default.
- W2949205180 hasAuthorship W2949205180A5046341550 @default.
- W2949205180 hasAuthorship W2949205180A5048342605 @default.
- W2949205180 hasAuthorship W2949205180A5050894971 @default.
- W2949205180 hasAuthorship W2949205180A5071672663 @default.
- W2949205180 hasAuthorship W2949205180A5073235870 @default.
- W2949205180 hasAuthorship W2949205180A5076563529 @default.
- W2949205180 hasAuthorship W2949205180A5086965113 @default.
- W2949205180 hasBestOaLocation W29492051801 @default.
- W2949205180 hasConcept C105795698 @default.
- W2949205180 hasConcept C119857082 @default.
- W2949205180 hasConcept C126831891 @default.
- W2949205180 hasConcept C150547873 @default.
- W2949205180 hasConcept C161584116 @default.
- W2949205180 hasConcept C165901193 @default.
- W2949205180 hasConcept C185933670 @default.
- W2949205180 hasConcept C18903297 @default.
- W2949205180 hasConcept C201997182 @default.
- W2949205180 hasConcept C205649164 @default.
- W2949205180 hasConcept C2775997332 @default.
- W2949205180 hasConcept C2776225656 @default.
- W2949205180 hasConcept C2781353541 @default.
- W2949205180 hasConcept C33923547 @default.
- W2949205180 hasConcept C41008148 @default.
- W2949205180 hasConcept C86803240 @default.
- W2949205180 hasConcept C90856448 @default.
- W2949205180 hasConceptScore W2949205180C105795698 @default.
- W2949205180 hasConceptScore W2949205180C119857082 @default.
- W2949205180 hasConceptScore W2949205180C126831891 @default.
- W2949205180 hasConceptScore W2949205180C150547873 @default.
- W2949205180 hasConceptScore W2949205180C161584116 @default.
- W2949205180 hasConceptScore W2949205180C165901193 @default.
- W2949205180 hasConceptScore W2949205180C185933670 @default.
- W2949205180 hasConceptScore W2949205180C18903297 @default.
- W2949205180 hasConceptScore W2949205180C201997182 @default.
- W2949205180 hasConceptScore W2949205180C205649164 @default.
- W2949205180 hasConceptScore W2949205180C2775997332 @default.
- W2949205180 hasConceptScore W2949205180C2776225656 @default.
- W2949205180 hasConceptScore W2949205180C2781353541 @default.
- W2949205180 hasConceptScore W2949205180C33923547 @default.
- W2949205180 hasConceptScore W2949205180C41008148 @default.