Matches in SemOpenAlex for { <https://semopenalex.org/work/W2949206003> ?p ?o ?g. }
- W2949206003 abstract "In this thesis, we study three physically relevant models of strongly correlated random variables: trapped fermions, random matrices and random walks. In the first part, we show several exact mappings between the ground state of a trapped Fermi gas and ensembles of random matrix theory. The Fermi gas is inhomogeneous in the trapping potential and in particular there is a finite edge beyond which its density vanishes. Going beyond standard semi-classical techniques (such as local density approximation), we develop a precise description of the spatial statistics close to the edge. This description holds for a large universality class of hard edge potentials. We apply these results to compute the statistics of the position of the fermion the farthest away from the centre of the trap, the number of fermions in a given domain (full counting statistics) and the related bipartite entanglement entropy. Our analysis also provides solutions to open problems of extreme value statistics in random matrix theory. We obtain for instance a complete description of the fluctuations of the largest eigenvalue in the complex Ginibre ensemble. In the second part of the thesis, we study extreme value questions for random walks. We consider the gap statistics, which requires to take explicitly into account the discreteness of the process. This question cannot be solved using the convergence of the process to its continuous counterpart, the Brownian motion. We obtain explicit analytical results for the gap statistics of the walk with a Laplace distribution of jumps and provide numerical evidence suggesting the universality of these results." @default.
- W2949206003 created "2019-06-27" @default.
- W2949206003 creator A5007525822 @default.
- W2949206003 date "2019-06-21" @default.
- W2949206003 modified "2023-09-27" @default.
- W2949206003 title "PhD thesis Extreme value statistics of strongly correlated systems: fermions, random matrices and random walks" @default.
- W2949206003 cites W112571974 @default.
- W2949206003 cites W1490722477 @default.
- W2949206003 cites W1521318186 @default.
- W2949206003 cites W1529091640 @default.
- W2949206003 cites W1535592032 @default.
- W2949206003 cites W1545370368 @default.
- W2949206003 cites W1552566358 @default.
- W2949206003 cites W1577096229 @default.
- W2949206003 cites W1593706933 @default.
- W2949206003 cites W1602301868 @default.
- W2949206003 cites W162457275 @default.
- W2949206003 cites W1641135400 @default.
- W2949206003 cites W1645448956 @default.
- W2949206003 cites W1661612333 @default.
- W2949206003 cites W1691157804 @default.
- W2949206003 cites W1729446407 @default.
- W2949206003 cites W1813708725 @default.
- W2949206003 cites W1820448988 @default.
- W2949206003 cites W183743776 @default.
- W2949206003 cites W1932523396 @default.
- W2949206003 cites W1942130166 @default.
- W2949206003 cites W1946165433 @default.
- W2949206003 cites W1958800402 @default.
- W2949206003 cites W1973335304 @default.
- W2949206003 cites W1974755392 @default.
- W2949206003 cites W1975322212 @default.
- W2949206003 cites W1975414048 @default.
- W2949206003 cites W1977200938 @default.
- W2949206003 cites W1977431865 @default.
- W2949206003 cites W1977738773 @default.
- W2949206003 cites W1978864992 @default.
- W2949206003 cites W1979308046 @default.
- W2949206003 cites W1980192929 @default.
- W2949206003 cites W1983850647 @default.
- W2949206003 cites W1989774396 @default.
- W2949206003 cites W1991101850 @default.
- W2949206003 cites W1991269728 @default.
- W2949206003 cites W1996466655 @default.
- W2949206003 cites W1997160996 @default.
- W2949206003 cites W2001095588 @default.
- W2949206003 cites W2001170284 @default.
- W2949206003 cites W2002222142 @default.
- W2949206003 cites W2002323044 @default.
- W2949206003 cites W2004142192 @default.
- W2949206003 cites W2004226321 @default.
- W2949206003 cites W2004519889 @default.
- W2949206003 cites W2006672084 @default.
- W2949206003 cites W2008448456 @default.
- W2949206003 cites W2008865857 @default.
- W2949206003 cites W2011433089 @default.
- W2949206003 cites W2012758717 @default.
- W2949206003 cites W2012967115 @default.
- W2949206003 cites W2014743216 @default.
- W2949206003 cites W2016493734 @default.
- W2949206003 cites W2018604123 @default.
- W2949206003 cites W2019996501 @default.
- W2949206003 cites W2020044987 @default.
- W2949206003 cites W2024118889 @default.
- W2949206003 cites W2024341177 @default.
- W2949206003 cites W2026173936 @default.
- W2949206003 cites W2026369120 @default.
- W2949206003 cites W2027765654 @default.
- W2949206003 cites W2028558540 @default.
- W2949206003 cites W2029419751 @default.
- W2949206003 cites W2031147858 @default.
- W2949206003 cites W2038073400 @default.
- W2949206003 cites W2038423279 @default.
- W2949206003 cites W2039585585 @default.
- W2949206003 cites W2043905980 @default.
- W2949206003 cites W2048578032 @default.
- W2949206003 cites W2048827595 @default.
- W2949206003 cites W2049587182 @default.
- W2949206003 cites W2050354101 @default.
- W2949206003 cites W2050701229 @default.
- W2949206003 cites W2053311897 @default.
- W2949206003 cites W2053347059 @default.
- W2949206003 cites W2056511881 @default.
- W2949206003 cites W2057524558 @default.
- W2949206003 cites W2058092920 @default.
- W2949206003 cites W2059477327 @default.
- W2949206003 cites W2059969954 @default.
- W2949206003 cites W2060581589 @default.
- W2949206003 cites W2061072394 @default.
- W2949206003 cites W2062600827 @default.
- W2949206003 cites W2062804495 @default.
- W2949206003 cites W2063192576 @default.
- W2949206003 cites W2066281510 @default.
- W2949206003 cites W2068484788 @default.
- W2949206003 cites W2069586592 @default.
- W2949206003 cites W2069840277 @default.
- W2949206003 cites W2071246696 @default.
- W2949206003 cites W2076947890 @default.
- W2949206003 cites W2077191608 @default.
- W2949206003 cites W2077439650 @default.