Matches in SemOpenAlex for { <https://semopenalex.org/work/W2949206847> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W2949206847 abstract "Bayesian methods for graphical log-linear marginal models have not been developed in the same extent as traditional frequentist approaches. In this work, we introduce a novel Bayesian approach for quantitative learning for such models. These models belong to curved exponential families that are difficult to handle from a Bayesian perspective. Furthermore, the likelihood cannot be analytically expressed as a function of the marginal log-linear interactions, but only in terms of cell counts or probabilities. Posterior distributions cannot be directly obtained, and MCMC methods are needed. Finally, a well-defined model requires parameter values that lead to compatible marginal probabilities. Hence, any MCMC should account for this important restriction. We construct a fully automatic and efficient MCMC strategy for quantitative learning for graphical log-linear marginal models that handles these problems. While the prior is expressed in terms of the marginal log-linear interactions, we build an MCMC algorithm that employs a proposal on the probability parameter space. The corresponding proposal on the marginal log-linear interactions is obtained via parameter transformation. By this strategy, we achieve to move within the desired target space. At each step, we directly work with well-defined probability distributions. Moreover, we can exploit a conditional conjugate setup to build an efficient proposal on probability parameters. The proposed methodology is illustrated by a simulation study and a real dataset." @default.
- W2949206847 created "2019-06-27" @default.
- W2949206847 creator A5021033859 @default.
- W2949206847 creator A5062615685 @default.
- W2949206847 creator A5064704210 @default.
- W2949206847 date "2018-07-03" @default.
- W2949206847 modified "2023-09-27" @default.
- W2949206847 title "Probability Based Independence Sampler for Bayesian Quantitative Learning in Graphical Log-Linear Marginal Models" @default.
- W2949206847 cites W1524401869 @default.
- W2949206847 cites W1549853756 @default.
- W2949206847 cites W1965733286 @default.
- W2949206847 cites W1985573253 @default.
- W2949206847 cites W1994230777 @default.
- W2949206847 cites W2026870540 @default.
- W2949206847 cites W2044215181 @default.
- W2949206847 cites W2069117653 @default.
- W2949206847 cites W2073947316 @default.
- W2949206847 cites W2074673068 @default.
- W2949206847 cites W2079352458 @default.
- W2949206847 cites W2127159115 @default.
- W2949206847 cites W2134364324 @default.
- W2949206847 cites W2144845984 @default.
- W2949206847 cites W2154385016 @default.
- W2949206847 cites W2162828821 @default.
- W2949206847 cites W2163318056 @default.
- W2949206847 cites W2921236784 @default.
- W2949206847 hasPublicationYear "2018" @default.
- W2949206847 type Work @default.
- W2949206847 sameAs 2949206847 @default.
- W2949206847 citedByCount "0" @default.
- W2949206847 crossrefType "posted-content" @default.
- W2949206847 hasAuthorship W2949206847A5021033859 @default.
- W2949206847 hasAuthorship W2949206847A5062615685 @default.
- W2949206847 hasAuthorship W2949206847A5064704210 @default.
- W2949206847 hasConcept C105795698 @default.
- W2949206847 hasConcept C107673813 @default.
- W2949206847 hasConcept C111350023 @default.
- W2949206847 hasConcept C11413529 @default.
- W2949206847 hasConcept C122123141 @default.
- W2949206847 hasConcept C152877465 @default.
- W2949206847 hasConcept C155846161 @default.
- W2949206847 hasConcept C160234255 @default.
- W2949206847 hasConcept C162376815 @default.
- W2949206847 hasConcept C163175372 @default.
- W2949206847 hasConcept C165216359 @default.
- W2949206847 hasConcept C177769412 @default.
- W2949206847 hasConcept C197656967 @default.
- W2949206847 hasConcept C33923547 @default.
- W2949206847 hasConcept C41008148 @default.
- W2949206847 hasConcept C57830394 @default.
- W2949206847 hasConcept C70519679 @default.
- W2949206847 hasConcept C95923904 @default.
- W2949206847 hasConceptScore W2949206847C105795698 @default.
- W2949206847 hasConceptScore W2949206847C107673813 @default.
- W2949206847 hasConceptScore W2949206847C111350023 @default.
- W2949206847 hasConceptScore W2949206847C11413529 @default.
- W2949206847 hasConceptScore W2949206847C122123141 @default.
- W2949206847 hasConceptScore W2949206847C152877465 @default.
- W2949206847 hasConceptScore W2949206847C155846161 @default.
- W2949206847 hasConceptScore W2949206847C160234255 @default.
- W2949206847 hasConceptScore W2949206847C162376815 @default.
- W2949206847 hasConceptScore W2949206847C163175372 @default.
- W2949206847 hasConceptScore W2949206847C165216359 @default.
- W2949206847 hasConceptScore W2949206847C177769412 @default.
- W2949206847 hasConceptScore W2949206847C197656967 @default.
- W2949206847 hasConceptScore W2949206847C33923547 @default.
- W2949206847 hasConceptScore W2949206847C41008148 @default.
- W2949206847 hasConceptScore W2949206847C57830394 @default.
- W2949206847 hasConceptScore W2949206847C70519679 @default.
- W2949206847 hasConceptScore W2949206847C95923904 @default.
- W2949206847 hasLocation W29492068471 @default.
- W2949206847 hasOpenAccess W2949206847 @default.
- W2949206847 hasPrimaryLocation W29492068471 @default.
- W2949206847 hasRelatedWork W1788616518 @default.
- W2949206847 hasRelatedWork W1967042859 @default.
- W2949206847 hasRelatedWork W2063516189 @default.
- W2949206847 hasRelatedWork W2078051489 @default.
- W2949206847 hasRelatedWork W2135329836 @default.
- W2949206847 hasRelatedWork W2292466958 @default.
- W2949206847 hasRelatedWork W2512851972 @default.
- W2949206847 hasRelatedWork W2520799754 @default.
- W2949206847 hasRelatedWork W2550389601 @default.
- W2949206847 hasRelatedWork W2563368355 @default.
- W2949206847 hasRelatedWork W2627405782 @default.
- W2949206847 hasRelatedWork W2790067608 @default.
- W2949206847 hasRelatedWork W2904421986 @default.
- W2949206847 hasRelatedWork W2906439497 @default.
- W2949206847 hasRelatedWork W2908008786 @default.
- W2949206847 hasRelatedWork W2912819213 @default.
- W2949206847 hasRelatedWork W2953377880 @default.
- W2949206847 hasRelatedWork W2963983664 @default.
- W2949206847 hasRelatedWork W3124605600 @default.
- W2949206847 hasRelatedWork W2803994013 @default.
- W2949206847 isParatext "false" @default.
- W2949206847 isRetracted "false" @default.
- W2949206847 magId "2949206847" @default.
- W2949206847 workType "article" @default.