Matches in SemOpenAlex for { <https://semopenalex.org/work/W2949215116> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W2949215116 abstract "In this paper we show that if one has a grid A x B, where A and B are sets of n real numbers, then there can be only very few ``rich'' lines in certain quite small families. Indeed, we show that if the family has lines taking on n^epsilon distinct slopes, and where each line is parallel to n^epsilon others (so, at least n^(2 epsilon) lines in total), then at least one of these lines must fail to be ``rich''. This result immediately implies non-trivial sum-product inequalities; though, our proof makes use of the Szemeredi-Trotter inequality, which Elekes used in his argument for lower bounds on |C+C| + |C.C|." @default.
- W2949215116 created "2019-06-27" @default.
- W2949215116 creator A5001899130 @default.
- W2949215116 creator A5038826312 @default.
- W2949215116 date "2008-07-15" @default.
- W2949215116 modified "2023-09-27" @default.
- W2949215116 title "On rich lines in grids" @default.
- W2949215116 cites W1585722514 @default.
- W2949215116 cites W2166961358 @default.
- W2949215116 hasPublicationYear "2008" @default.
- W2949215116 type Work @default.
- W2949215116 sameAs 2949215116 @default.
- W2949215116 citedByCount "0" @default.
- W2949215116 crossrefType "posted-content" @default.
- W2949215116 hasAuthorship W2949215116A5001899130 @default.
- W2949215116 hasAuthorship W2949215116A5038826312 @default.
- W2949215116 hasConcept C114614502 @default.
- W2949215116 hasConcept C118615104 @default.
- W2949215116 hasConcept C185592680 @default.
- W2949215116 hasConcept C187691185 @default.
- W2949215116 hasConcept C198352243 @default.
- W2949215116 hasConcept C2524010 @default.
- W2949215116 hasConcept C33923547 @default.
- W2949215116 hasConcept C55493867 @default.
- W2949215116 hasConcept C75432250 @default.
- W2949215116 hasConcept C90673727 @default.
- W2949215116 hasConcept C98184364 @default.
- W2949215116 hasConceptScore W2949215116C114614502 @default.
- W2949215116 hasConceptScore W2949215116C118615104 @default.
- W2949215116 hasConceptScore W2949215116C185592680 @default.
- W2949215116 hasConceptScore W2949215116C187691185 @default.
- W2949215116 hasConceptScore W2949215116C198352243 @default.
- W2949215116 hasConceptScore W2949215116C2524010 @default.
- W2949215116 hasConceptScore W2949215116C33923547 @default.
- W2949215116 hasConceptScore W2949215116C55493867 @default.
- W2949215116 hasConceptScore W2949215116C75432250 @default.
- W2949215116 hasConceptScore W2949215116C90673727 @default.
- W2949215116 hasConceptScore W2949215116C98184364 @default.
- W2949215116 hasLocation W29492151161 @default.
- W2949215116 hasOpenAccess W2949215116 @default.
- W2949215116 hasPrimaryLocation W29492151161 @default.
- W2949215116 hasRelatedWork W1674943458 @default.
- W2949215116 hasRelatedWork W2069855300 @default.
- W2949215116 hasRelatedWork W2091642380 @default.
- W2949215116 hasRelatedWork W2241896673 @default.
- W2949215116 hasRelatedWork W2319187540 @default.
- W2949215116 hasRelatedWork W2798878397 @default.
- W2949215116 hasRelatedWork W2889490453 @default.
- W2949215116 hasRelatedWork W2898996103 @default.
- W2949215116 hasRelatedWork W2950173600 @default.
- W2949215116 hasRelatedWork W2951955301 @default.
- W2949215116 hasRelatedWork W2963427894 @default.
- W2949215116 hasRelatedWork W2963592743 @default.
- W2949215116 hasRelatedWork W2964026705 @default.
- W2949215116 hasRelatedWork W2974183384 @default.
- W2949215116 hasRelatedWork W2990219750 @default.
- W2949215116 hasRelatedWork W3016883859 @default.
- W2949215116 hasRelatedWork W3098403304 @default.
- W2949215116 hasRelatedWork W3104038630 @default.
- W2949215116 hasRelatedWork W3142335819 @default.
- W2949215116 hasRelatedWork W3166470924 @default.
- W2949215116 isParatext "false" @default.
- W2949215116 isRetracted "false" @default.
- W2949215116 magId "2949215116" @default.
- W2949215116 workType "article" @default.