Matches in SemOpenAlex for { <https://semopenalex.org/work/W2949237187> ?p ?o ?g. }
- W2949237187 abstract "Pigmentation quality is one of the most important criteria in Atlantic salmon (Salmo salar) products. The red colour is a result of pigment carotenoids such as astaxanthin (A(_x)) and canthaxanthin (C(_x)) deposited in myofibrillar proteins of white muscle tissue and the concentration of these pigment carotenoids correlate well with the red colour intensity. Sea water temperatures in Tasmanian commonly exceed 20°C for prolonged periods in summer. This is associated with reduced pigmentation quality, which is characterised by reduced red colour intensity and increased heterogeneity in pigmentation on the fillet surface of individual salmon, leading to substantial product downgrade. This phenomenon is typically concurrent with reduced feed intake rates or even the cessation of feed intake. The aim of the thesis was to improve the fundamental understanding of factors and mechanisms that reduce pigmentation quality in salmon exposed to elevated temperature in order to improve pigmentation management in salmon farming.Post-smolts that doubled initial weights at an elevated temperature (19.5°C) showed increased concentrations of A(_x) in white muscle compared to fish held at a control temperature (15°C). However, in contrast to 15°C, the concentration of A(_x) was lower in the anterior/dorsal fillet cut (ADC), compared to the dorsal Norwegian quality cut (dNQC) at 19.5°C. Differences in the A(_x) concentration per unit of crude protein in white muscle between the fillet cuts at 19.5°C may have indicated differences in the affinity of myofibrillar proteins in muscle to bind A(_x). A novel experimental in vivo carotenoid depletion model (four weeks starvation-challenge at 19.5°C) was developed. After starvation-challenge, fish showed a marked drop of redness chromaticity (a*) by image analysis on the ADC. A follow-up study confirmed the image analysis results by a marked reduction of A(_x) concentration in the ADC, and there was also a reduction of A(_x) in the dNQC when fish were starved at 20.8°C for four weeks. Fish starved for the same period of time at 15°C also showed a loss in A(_x) concentration in the ADC. Thus, starvation is the main factor that causes reduced pigmentation quality and elevated temperature (20.8°C) exacerbated the effect. Pigment carotenoids are potent antioxidants, but the concentration of A(_x) was not associated with oxidative stress (OS) in muscle of either growing or starving fish. Further, an increase in the concentration of the antioxidant α-tocopherol in muscle did not prevent the reduction of a*-values at starvation-challenge. There was no idoxanthin (Ix), the first metabolic product of A(_x), in the muscle of either growing or starving fish, which showed that metabolic conversion did not explain the differences in the concentration of A(_x). Further, despite the lipophilic nature of carotenoids and interactions with dietary lipids, the dietary fatty acid (FA) composition did not affect A(_x) deposition at 15°C and 19.5°C in feeding salmon, and lipid fluxes in a subsequent starvation phase at 15°C and 20.8°C showed no association with the reduction in the concentration of A(_x). However, a change in FAs used as energy substrate in white muscle occurred during starvation and was related to the reduction of the concentration of A(_x). These changes may have indicated that a switch in lipid metabolism may have been associated with the reduction of A(_x) concentration. Energy homeostasis in animals cells is complex and a change in lipid metabolism is likely linked to other changes which may also affect muscle proteins. Proteolytic processes are elevated in immature salmonids at starvation and in maturing salmonids during spawning migration. During spawning migration, anadromous salmonids starve, use vast amounts of muscle protein as energy substrate and reallocate carotenoids from muscle into other tissues.Globally rising sea water temperatures require more knowledge on the effects of elevated temperature on the biology and product quality of aquaculture species produced in the marine environment. The current research indicated that reduced pigmentation quality in salmon at elevated temperature was not associated with OS, the metabolic conversion of A(_x) to Ix, or interactions with lipids, respectively. However, the differences in the A(_x) concentration per unit crude protein at elevated temperature, and changes in energy homeostasis associated with the reduction in A(_x) concentration at starvation indicated that proteolytic processes could be involved. In order to further the findings of this thesis, the effects of muscle proteolytic processes on pigmentation quality in salmon fillets at elevated temperature warrants further research." @default.
- W2949237187 created "2019-06-27" @default.
- W2949237187 creator A5084472906 @default.
- W2949237187 date "2018-01-01" @default.
- W2949237187 modified "2023-09-27" @default.
- W2949237187 title "Factors affecting pigmentation quality in Atlantic salmon (Salmo salar L.) at elevated temperature" @default.
- W2949237187 cites W1528102719 @default.
- W2949237187 cites W1890086699 @default.
- W2949237187 cites W1904346271 @default.
- W2949237187 cites W1964863934 @default.
- W2949237187 cites W1967303205 @default.
- W2949237187 cites W1976390522 @default.
- W2949237187 cites W1976439732 @default.
- W2949237187 cites W1976715615 @default.
- W2949237187 cites W1980339478 @default.
- W2949237187 cites W1982339191 @default.
- W2949237187 cites W1983135948 @default.
- W2949237187 cites W1983741170 @default.
- W2949237187 cites W1986834482 @default.
- W2949237187 cites W1990251890 @default.
- W2949237187 cites W1992248108 @default.
- W2949237187 cites W1994593775 @default.
- W2949237187 cites W1994976886 @default.
- W2949237187 cites W1998917216 @default.
- W2949237187 cites W2001157695 @default.
- W2949237187 cites W2007505836 @default.
- W2949237187 cites W2007755478 @default.
- W2949237187 cites W2008490546 @default.
- W2949237187 cites W2009874712 @default.
- W2949237187 cites W2011160592 @default.
- W2949237187 cites W2017110335 @default.
- W2949237187 cites W2021576408 @default.
- W2949237187 cites W2021662620 @default.
- W2949237187 cites W2023163866 @default.
- W2949237187 cites W2024188719 @default.
- W2949237187 cites W2024267552 @default.
- W2949237187 cites W2025496869 @default.
- W2949237187 cites W2025912017 @default.
- W2949237187 cites W2031530074 @default.
- W2949237187 cites W2037354325 @default.
- W2949237187 cites W2052895449 @default.
- W2949237187 cites W2053499751 @default.
- W2949237187 cites W2056889249 @default.
- W2949237187 cites W2057160179 @default.
- W2949237187 cites W2062136322 @default.
- W2949237187 cites W2067443714 @default.
- W2949237187 cites W2068972525 @default.
- W2949237187 cites W2069092395 @default.
- W2949237187 cites W2071523033 @default.
- W2949237187 cites W2078139350 @default.
- W2949237187 cites W2080357151 @default.
- W2949237187 cites W2086730040 @default.
- W2949237187 cites W2091873511 @default.
- W2949237187 cites W2100672195 @default.
- W2949237187 cites W2119173231 @default.
- W2949237187 cites W2121654587 @default.
- W2949237187 cites W2126757262 @default.
- W2949237187 cites W2150412352 @default.
- W2949237187 cites W2170526243 @default.
- W2949237187 cites W2193011590 @default.
- W2949237187 cites W2282309287 @default.
- W2949237187 cites W2328144189 @default.
- W2949237187 cites W2460769605 @default.
- W2949237187 cites W2568928600 @default.
- W2949237187 cites W2581268998 @default.
- W2949237187 cites W2605719812 @default.
- W2949237187 cites W370085712 @default.
- W2949237187 hasPublicationYear "2018" @default.
- W2949237187 type Work @default.
- W2949237187 sameAs 2949237187 @default.
- W2949237187 citedByCount "0" @default.
- W2949237187 crossrefType "dissertation" @default.
- W2949237187 hasAuthorship W2949237187A5084472906 @default.
- W2949237187 hasConcept C105702510 @default.
- W2949237187 hasConcept C121646663 @default.
- W2949237187 hasConcept C140793950 @default.
- W2949237187 hasConcept C159985019 @default.
- W2949237187 hasConcept C178790620 @default.
- W2949237187 hasConcept C185592680 @default.
- W2949237187 hasConcept C192562407 @default.
- W2949237187 hasConcept C2777940460 @default.
- W2949237187 hasConcept C2778584577 @default.
- W2949237187 hasConcept C2780642787 @default.
- W2949237187 hasConcept C2780962900 @default.
- W2949237187 hasConcept C2781321622 @default.
- W2949237187 hasConcept C28781525 @default.
- W2949237187 hasConcept C2909208804 @default.
- W2949237187 hasConcept C31903555 @default.
- W2949237187 hasConcept C505870484 @default.
- W2949237187 hasConcept C64584667 @default.
- W2949237187 hasConcept C86803240 @default.
- W2949237187 hasConceptScore W2949237187C105702510 @default.
- W2949237187 hasConceptScore W2949237187C121646663 @default.
- W2949237187 hasConceptScore W2949237187C140793950 @default.
- W2949237187 hasConceptScore W2949237187C159985019 @default.
- W2949237187 hasConceptScore W2949237187C178790620 @default.
- W2949237187 hasConceptScore W2949237187C185592680 @default.
- W2949237187 hasConceptScore W2949237187C192562407 @default.
- W2949237187 hasConceptScore W2949237187C2777940460 @default.
- W2949237187 hasConceptScore W2949237187C2778584577 @default.