Matches in SemOpenAlex for { <https://semopenalex.org/work/W2949246094> ?p ?o ?g. }
- W2949246094 endingPage "2071" @default.
- W2949246094 startingPage "2062" @default.
- W2949246094 abstract "PURPOSE To validate currently used recurrence prediction models for renal cell carcinoma (RCC) by using prospective data from the ASSURE (ECOG-ACRIN E2805; Adjuvant Sorafenib or Sunitinib for Unfavorable Renal Carcinoma) adjuvant trial. PATIENTS AND METHODS Eight RCC recurrence models (University of California at Los Angeles Integrated Staging System [UISS]; Stage, Size, Grade, and Necrosis [SSIGN]; Leibovich; Kattan; Memorial Sloan Kettering Cancer Center [MSKCC]; Yaycioglu; Karakiewicz; and Cindolo) were selected on the basis of their use in clinical practice and clinical trial designs. These models along with the TNM staging system were validated using 1,647 patients with resected localized high-grade or locally advanced disease (≥ pT1b grade 3 and 4/pTanyN1Mo) from the ASSURE cohort. The predictive performance of the model was quantified by assessing its discriminatory and calibration abilities. RESULTS Prospective validation of predictive and prognostic models for localized RCC showed a substantial decrease in each of the predictive abilities of the model compared with their original and externally validated discriminatory estimates. Among the models, the SSIGN score performed best (0.688; 95% CI, 0.686 to 0.689), and the UISS model performed worst (0.556; 95% CI, 0.555 to 0.557). Compared with the 2002 TNM staging system (C-index, 0.60), most models only marginally outperformed standard staging. Importantly, all models, including TNM, demonstrated statistically significant variability in their predictive ability over time and were most useful within the first 2 years after diagnosis. CONCLUSION In RCC, as in many other solid malignancies, clinicians rely on retrospective prediction tools to guide patient care and clinical trial selection and largely overestimate their predictive abilities. We used prospective collected adjuvant trial data to validate existing RCC prediction models and demonstrate a sharp decrease in the predictive ability of all models compared with their previous retrospective validations. Accordingly, we recommend prospective validation of any predictive model before implementing it into clinical practice and clinical trial design." @default.
- W2949246094 created "2019-06-27" @default.
- W2949246094 creator A5001783218 @default.
- W2949246094 creator A5013406375 @default.
- W2949246094 creator A5017537551 @default.
- W2949246094 creator A5017807474 @default.
- W2949246094 creator A5023174631 @default.
- W2949246094 creator A5033346506 @default.
- W2949246094 creator A5040964782 @default.
- W2949246094 creator A5043554307 @default.
- W2949246094 creator A5045746656 @default.
- W2949246094 creator A5046123003 @default.
- W2949246094 creator A5051018110 @default.
- W2949246094 creator A5071194144 @default.
- W2949246094 creator A5089499530 @default.
- W2949246094 creator A5090879940 @default.
- W2949246094 date "2019-08-10" @default.
- W2949246094 modified "2023-10-16" @default.
- W2949246094 title "Predicting Renal Cancer Recurrence: Defining Limitations of Existing Prognostic Models With Prospective Trial-Based Validation" @default.
- W2949246094 cites W107201935 @default.
- W2949246094 cites W1144300234 @default.
- W2949246094 cites W1509042831 @default.
- W2949246094 cites W1917111603 @default.
- W2949246094 cites W1985299015 @default.
- W2949246094 cites W1988375742 @default.
- W2949246094 cites W1992142098 @default.
- W2949246094 cites W2027282695 @default.
- W2949246094 cites W2031657401 @default.
- W2949246094 cites W2069480574 @default.
- W2949246094 cites W2071794510 @default.
- W2949246094 cites W2083887116 @default.
- W2949246094 cites W2086360994 @default.
- W2949246094 cites W2120579447 @default.
- W2949246094 cites W2121659103 @default.
- W2949246094 cites W2121827874 @default.
- W2949246094 cites W2129925362 @default.
- W2949246094 cites W2172050766 @default.
- W2949246094 cites W2293077587 @default.
- W2949246094 cites W2293962048 @default.
- W2949246094 cites W2442281870 @default.
- W2949246094 cites W2530419161 @default.
- W2949246094 cites W2573152477 @default.
- W2949246094 cites W2756219586 @default.
- W2949246094 cites W2775554882 @default.
- W2949246094 cites W2884747948 @default.
- W2949246094 cites W4239180165 @default.
- W2949246094 doi "https://doi.org/10.1200/jco.19.00107" @default.
- W2949246094 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7085167" @default.
- W2949246094 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31216227" @default.
- W2949246094 hasPublicationYear "2019" @default.
- W2949246094 type Work @default.
- W2949246094 sameAs 2949246094 @default.
- W2949246094 citedByCount "67" @default.
- W2949246094 countsByYear W29492460942019 @default.
- W2949246094 countsByYear W29492460942020 @default.
- W2949246094 countsByYear W29492460942021 @default.
- W2949246094 countsByYear W29492460942022 @default.
- W2949246094 countsByYear W29492460942023 @default.
- W2949246094 crossrefType "journal-article" @default.
- W2949246094 hasAuthorship W2949246094A5001783218 @default.
- W2949246094 hasAuthorship W2949246094A5013406375 @default.
- W2949246094 hasAuthorship W2949246094A5017537551 @default.
- W2949246094 hasAuthorship W2949246094A5017807474 @default.
- W2949246094 hasAuthorship W2949246094A5023174631 @default.
- W2949246094 hasAuthorship W2949246094A5033346506 @default.
- W2949246094 hasAuthorship W2949246094A5040964782 @default.
- W2949246094 hasAuthorship W2949246094A5043554307 @default.
- W2949246094 hasAuthorship W2949246094A5045746656 @default.
- W2949246094 hasAuthorship W2949246094A5046123003 @default.
- W2949246094 hasAuthorship W2949246094A5051018110 @default.
- W2949246094 hasAuthorship W2949246094A5071194144 @default.
- W2949246094 hasAuthorship W2949246094A5089499530 @default.
- W2949246094 hasAuthorship W2949246094A5090879940 @default.
- W2949246094 hasBestOaLocation W29492460941 @default.
- W2949246094 hasConcept C121608353 @default.
- W2949246094 hasConcept C126322002 @default.
- W2949246094 hasConcept C143998085 @default.
- W2949246094 hasConcept C146357865 @default.
- W2949246094 hasConcept C151730666 @default.
- W2949246094 hasConcept C188816634 @default.
- W2949246094 hasConcept C2776808855 @default.
- W2949246094 hasConcept C2777472916 @default.
- W2949246094 hasConcept C2778019345 @default.
- W2949246094 hasConcept C2778695046 @default.
- W2949246094 hasConcept C2779490328 @default.
- W2949246094 hasConcept C2780325254 @default.
- W2949246094 hasConcept C2781068499 @default.
- W2949246094 hasConcept C2993415550 @default.
- W2949246094 hasConcept C34626388 @default.
- W2949246094 hasConcept C535046627 @default.
- W2949246094 hasConcept C71924100 @default.
- W2949246094 hasConcept C86803240 @default.
- W2949246094 hasConceptScore W2949246094C121608353 @default.
- W2949246094 hasConceptScore W2949246094C126322002 @default.
- W2949246094 hasConceptScore W2949246094C143998085 @default.
- W2949246094 hasConceptScore W2949246094C146357865 @default.
- W2949246094 hasConceptScore W2949246094C151730666 @default.
- W2949246094 hasConceptScore W2949246094C188816634 @default.