Matches in SemOpenAlex for { <https://semopenalex.org/work/W2949272238> ?p ?o ?g. }
- W2949272238 abstract "In a seminal paper of 2005, Nualart and Peccati discovered a surprising central limit theorem (called the Moment Theorem in the sequel) for sequences of multiple stochastic integrals of a fixed order: in this context, convergence in distribution to the standard normal law is equivalent to convergence of just the fourth moment. Shortly afterwards, Peccati and Tudor gave a multidimensional version of this characterization. Since the publication of these two beautiful papers, many improvements and developments on this theme have been considered. Among them is the work by Nualart and Ortiz-Latorre, giving a new proof only based on Malliavin calculus and the use of integration by parts on Wiener space. A second step is my joint paper method on Wiener chaos (written in collaboration with Peccati) in which, by bringing together Stein's method with Malliavin calculus, we have been able (among other things) to associate quantitative bounds to the Fourth Moment Theorem. It turns out that Stein's method and Malliavin calculus fit together admirably well. Their interaction has led to some remarkable new results involving central and non-central limit theorems for functionals of infinite-dimensional Gaussian fields. The current survey aims to introduce the main features of this recent theory. It originates from a series of lectures I delivered at the College de France between January and March 2012, within the framework of the annual prize of the Fondation des Sciences Mathematiques de Paris. It may be seen as a teaser for the book Normal Approximations Using Malliavin Calculus: from Stein's Method to Universality (jointly written with Peccati), in which the interested reader will find much more than in this short survey." @default.
- W2949272238 created "2019-06-27" @default.
- W2949272238 creator A5075482281 @default.
- W2949272238 date "2012-03-19" @default.
- W2949272238 modified "2023-10-06" @default.
- W2949272238 title "Lectures on Gaussian approximations with Malliavin calculus" @default.
- W2949272238 cites W1031912070 @default.
- W2949272238 cites W1422901211 @default.
- W2949272238 cites W1496725535 @default.
- W2949272238 cites W1538919982 @default.
- W2949272238 cites W1554577510 @default.
- W2949272238 cites W1678605565 @default.
- W2949272238 cites W1810327466 @default.
- W2949272238 cites W183224012 @default.
- W2949272238 cites W1873595945 @default.
- W2949272238 cites W1876866395 @default.
- W2949272238 cites W1880172421 @default.
- W2949272238 cites W1971484320 @default.
- W2949272238 cites W1983314966 @default.
- W2949272238 cites W2002348550 @default.
- W2949272238 cites W2004014168 @default.
- W2949272238 cites W2006471730 @default.
- W2949272238 cites W2010245844 @default.
- W2949272238 cites W2014903152 @default.
- W2949272238 cites W2016648799 @default.
- W2949272238 cites W2051302879 @default.
- W2949272238 cites W2089340906 @default.
- W2949272238 cites W2090343294 @default.
- W2949272238 cites W2100672112 @default.
- W2949272238 cites W2100676242 @default.
- W2949272238 cites W2101069571 @default.
- W2949272238 cites W2124150141 @default.
- W2949272238 cites W2126001881 @default.
- W2949272238 cites W2130269141 @default.
- W2949272238 cites W2152735716 @default.
- W2949272238 cites W2204538763 @default.
- W2949272238 cites W2328187444 @default.
- W2949272238 cites W2950086142 @default.
- W2949272238 cites W2963556658 @default.
- W2949272238 cites W2964014802 @default.
- W2949272238 cites W2964157552 @default.
- W2949272238 cites W3098618598 @default.
- W2949272238 cites W3102840074 @default.
- W2949272238 cites W3125770321 @default.
- W2949272238 cites W364436601 @default.
- W2949272238 cites W591099569 @default.
- W2949272238 cites W630423399 @default.
- W2949272238 cites W98016743 @default.
- W2949272238 hasPublicationYear "2012" @default.
- W2949272238 type Work @default.
- W2949272238 sameAs 2949272238 @default.
- W2949272238 citedByCount "4" @default.
- W2949272238 countsByYear W29492722382012 @default.
- W2949272238 countsByYear W29492722382013 @default.
- W2949272238 countsByYear W29492722382016 @default.
- W2949272238 crossrefType "posted-content" @default.
- W2949272238 hasAuthorship W2949272238A5075482281 @default.
- W2949272238 hasConcept C105795698 @default.
- W2949272238 hasConcept C11505638 @default.
- W2949272238 hasConcept C121332964 @default.
- W2949272238 hasConcept C134306372 @default.
- W2949272238 hasConcept C151201525 @default.
- W2949272238 hasConcept C162324750 @default.
- W2949272238 hasConcept C163716315 @default.
- W2949272238 hasConcept C166785042 @default.
- W2949272238 hasConcept C166957645 @default.
- W2949272238 hasConcept C179254644 @default.
- W2949272238 hasConcept C199343813 @default.
- W2949272238 hasConcept C205649164 @default.
- W2949272238 hasConcept C2777303404 @default.
- W2949272238 hasConcept C2777686260 @default.
- W2949272238 hasConcept C2779343474 @default.
- W2949272238 hasConcept C33923547 @default.
- W2949272238 hasConcept C50522688 @default.
- W2949272238 hasConcept C62520636 @default.
- W2949272238 hasConcept C71924100 @default.
- W2949272238 hasConcept C74650414 @default.
- W2949272238 hasConcept C78045399 @default.
- W2949272238 hasConcept C84629840 @default.
- W2949272238 hasConceptScore W2949272238C105795698 @default.
- W2949272238 hasConceptScore W2949272238C11505638 @default.
- W2949272238 hasConceptScore W2949272238C121332964 @default.
- W2949272238 hasConceptScore W2949272238C134306372 @default.
- W2949272238 hasConceptScore W2949272238C151201525 @default.
- W2949272238 hasConceptScore W2949272238C162324750 @default.
- W2949272238 hasConceptScore W2949272238C163716315 @default.
- W2949272238 hasConceptScore W2949272238C166785042 @default.
- W2949272238 hasConceptScore W2949272238C166957645 @default.
- W2949272238 hasConceptScore W2949272238C179254644 @default.
- W2949272238 hasConceptScore W2949272238C199343813 @default.
- W2949272238 hasConceptScore W2949272238C205649164 @default.
- W2949272238 hasConceptScore W2949272238C2777303404 @default.
- W2949272238 hasConceptScore W2949272238C2777686260 @default.
- W2949272238 hasConceptScore W2949272238C2779343474 @default.
- W2949272238 hasConceptScore W2949272238C33923547 @default.
- W2949272238 hasConceptScore W2949272238C50522688 @default.
- W2949272238 hasConceptScore W2949272238C62520636 @default.
- W2949272238 hasConceptScore W2949272238C71924100 @default.
- W2949272238 hasConceptScore W2949272238C74650414 @default.
- W2949272238 hasConceptScore W2949272238C78045399 @default.