Matches in SemOpenAlex for { <https://semopenalex.org/work/W2949276009> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W2949276009 abstract "Consider a Bayesian situation in which we observe $Y sim p_{theta}$, where $theta in Theta$, and we have a family ${ nu_h, , h in mathcal{H} }$ of potential prior distributions on $Theta$. Let $g$ be a real-valued function of $theta$, and let $I_g(h)$ be the posterior expectation of $g(theta)$ when the prior is $nu_h$. We are interested in two problems: (i) selecting a particular value of $h$, and (ii) estimating the family of posterior expectations ${ I_g(h), , h in mathcal{H} }$. Let $m_y(h)$ be the marginal likelihood of the hyperparameter $h$: $m_y(h) = int p_{theta}(y) , nu_h(dtheta)$. The empirical Bayes estimate of $h$ is, by definition, the value of $h$ that maximizes $m_y(h)$. It turns out that it is typically possible to use Markov chain Monte Carlo to form point estimates for $m_y(h)$ and $I_g(h)$ for each individual $h$ in a continuum, and also confidence intervals for $m_y(h)$ and $I_g(h)$ that are valid pointwise. However, we are interested in forming estimates, with confidence statements, of the entire families of integrals ${ m_y(h), , h in mathcal{H} }$ and ${ I_g(h), , h in mathcal{H} }$: we need estimates of the first family in order to carry out empirical Bayes inference, and we need estimates of the second family in order to do Bayesian sensitivity analysis. We establish strong consistency and functional central limit theorems for estimates of these families by using tools from empirical process theory. We give two applications, one to Latent Dirichlet Allocation, which is used in topic modelling, and the other is to a model for Bayesian variable selection in linear regression." @default.
- W2949276009 created "2019-06-27" @default.
- W2949276009 creator A5023010126 @default.
- W2949276009 creator A5036686381 @default.
- W2949276009 date "2018-07-05" @default.
- W2949276009 modified "2023-09-27" @default.
- W2949276009 title "An MCMC Approach to Empirical Bayes Inference and Bayesian Sensitivity Analysis via Empirical Processes" @default.
- W2949276009 cites W1480812382 @default.
- W2949276009 cites W1523228994 @default.
- W2949276009 cites W1535681442 @default.
- W2949276009 cites W1573263466 @default.
- W2949276009 cites W1880262756 @default.
- W2949276009 cites W1982508956 @default.
- W2949276009 cites W1983628095 @default.
- W2949276009 cites W1995713768 @default.
- W2949276009 cites W1999974018 @default.
- W2949276009 cites W2001082470 @default.
- W2949276009 cites W2005747881 @default.
- W2949276009 cites W2014751010 @default.
- W2949276009 cites W2017488093 @default.
- W2949276009 cites W2020389170 @default.
- W2949276009 cites W2043432627 @default.
- W2949276009 cites W2047323186 @default.
- W2949276009 cites W2061905469 @default.
- W2949276009 cites W2084089095 @default.
- W2949276009 cites W2103179127 @default.
- W2949276009 cites W2161353674 @default.
- W2949276009 cites W2166624680 @default.
- W2949276009 cites W2502017989 @default.
- W2949276009 cites W2520638700 @default.
- W2949276009 hasPublicationYear "2018" @default.
- W2949276009 type Work @default.
- W2949276009 sameAs 2949276009 @default.
- W2949276009 citedByCount "1" @default.
- W2949276009 countsByYear W29492760092018 @default.
- W2949276009 crossrefType "posted-content" @default.
- W2949276009 hasAuthorship W2949276009A5023010126 @default.
- W2949276009 hasAuthorship W2949276009A5036686381 @default.
- W2949276009 hasConcept C105795698 @default.
- W2949276009 hasConcept C107673813 @default.
- W2949276009 hasConcept C111350023 @default.
- W2949276009 hasConcept C11413529 @default.
- W2949276009 hasConcept C114614502 @default.
- W2949276009 hasConcept C134306372 @default.
- W2949276009 hasConcept C207201462 @default.
- W2949276009 hasConcept C2777984123 @default.
- W2949276009 hasConcept C28826006 @default.
- W2949276009 hasConcept C33923547 @default.
- W2949276009 hasConcept C8642999 @default.
- W2949276009 hasConceptScore W2949276009C105795698 @default.
- W2949276009 hasConceptScore W2949276009C107673813 @default.
- W2949276009 hasConceptScore W2949276009C111350023 @default.
- W2949276009 hasConceptScore W2949276009C11413529 @default.
- W2949276009 hasConceptScore W2949276009C114614502 @default.
- W2949276009 hasConceptScore W2949276009C134306372 @default.
- W2949276009 hasConceptScore W2949276009C207201462 @default.
- W2949276009 hasConceptScore W2949276009C2777984123 @default.
- W2949276009 hasConceptScore W2949276009C28826006 @default.
- W2949276009 hasConceptScore W2949276009C33923547 @default.
- W2949276009 hasConceptScore W2949276009C8642999 @default.
- W2949276009 hasLocation W29492760091 @default.
- W2949276009 hasOpenAccess W2949276009 @default.
- W2949276009 hasPrimaryLocation W29492760091 @default.
- W2949276009 hasRelatedWork W1560079361 @default.
- W2949276009 hasRelatedWork W1983027559 @default.
- W2949276009 hasRelatedWork W1996655692 @default.
- W2949276009 hasRelatedWork W1999968812 @default.
- W2949276009 hasRelatedWork W2001891933 @default.
- W2949276009 hasRelatedWork W2025123589 @default.
- W2949276009 hasRelatedWork W2025330016 @default.
- W2949276009 hasRelatedWork W2027340191 @default.
- W2949276009 hasRelatedWork W2053536650 @default.
- W2949276009 hasRelatedWork W2057696246 @default.
- W2949276009 hasRelatedWork W2071272663 @default.
- W2949276009 hasRelatedWork W2085107973 @default.
- W2949276009 hasRelatedWork W2809950317 @default.
- W2949276009 hasRelatedWork W2888518729 @default.
- W2949276009 hasRelatedWork W2893118095 @default.
- W2949276009 hasRelatedWork W2963556626 @default.
- W2949276009 hasRelatedWork W2963567595 @default.
- W2949276009 hasRelatedWork W3046868808 @default.
- W2949276009 hasRelatedWork W3098744580 @default.
- W2949276009 hasRelatedWork W3184874801 @default.
- W2949276009 isParatext "false" @default.
- W2949276009 isRetracted "false" @default.
- W2949276009 magId "2949276009" @default.
- W2949276009 workType "article" @default.