Matches in SemOpenAlex for { <https://semopenalex.org/work/W2949276744> ?p ?o ?g. }
- W2949276744 abstract "In many scientific fields, such as economics and neuroscience, we are often faced with nonstationary time series, and concerned with both finding causal relations and forecasting the values of variables of interest, both of which are particularly challenging in such nonstationary environments. In this paper, we study causal discovery and forecasting for nonstationary time series. By exploiting a particular type of state-space model to represent the processes, we show that nonstationarity helps to identify causal structure and that forecasting naturally benefits from learned causal knowledge. Specifically, we allow changes in both causal strengths and noise variances in the nonlinear state-space models, which, interestingly, renders both the causal structure and model parameters identifiable. Given the causal model, we treat forecasting as a problem in Bayesian inference in the causal model, which exploits the time-varying property of the data and adapts to new observations in a principled manner. Experimental results on synthetic and real-world data sets demonstrate the efficacy of the proposed methods." @default.
- W2949276744 created "2019-06-27" @default.
- W2949276744 creator A5016038041 @default.
- W2949276744 creator A5047903148 @default.
- W2949276744 creator A5071784683 @default.
- W2949276744 creator A5091227928 @default.
- W2949276744 date "2019-05-26" @default.
- W2949276744 modified "2023-09-27" @default.
- W2949276744 title "Causal Discovery and Forecasting in Nonstationary Environments with State-Space Models" @default.
- W2949276744 cites W1524326598 @default.
- W2949276744 cites W1548818142 @default.
- W2949276744 cites W1596437242 @default.
- W2949276744 cites W1746819321 @default.
- W2949276744 cites W1759300969 @default.
- W2949276744 cites W1790336448 @default.
- W2949276744 cites W1841784391 @default.
- W2949276744 cites W2014333877 @default.
- W2949276744 cites W2021437537 @default.
- W2949276744 cites W2074682976 @default.
- W2949276744 cites W2083689856 @default.
- W2949276744 cites W2093242491 @default.
- W2949276744 cites W2105934661 @default.
- W2949276744 cites W2125862452 @default.
- W2949276744 cites W2129723167 @default.
- W2949276744 cites W2135046866 @default.
- W2949276744 cites W2142277116 @default.
- W2949276744 cites W2142857211 @default.
- W2949276744 cites W2146531590 @default.
- W2949276744 cites W2151226328 @default.
- W2949276744 cites W2154195147 @default.
- W2949276744 cites W2160512933 @default.
- W2949276744 cites W2165582599 @default.
- W2949276744 cites W2170112109 @default.
- W2949276744 cites W2178225550 @default.
- W2949276744 cites W2186461911 @default.
- W2949276744 cites W2387823928 @default.
- W2949276744 cites W2396045092 @default.
- W2949276744 cites W2740437707 @default.
- W2949276744 cites W2771917759 @default.
- W2949276744 cites W2772580566 @default.
- W2949276744 cites W2790376986 @default.
- W2949276744 cites W2808914202 @default.
- W2949276744 cites W2891587032 @default.
- W2949276744 cites W2946629021 @default.
- W2949276744 cites W2949651744 @default.
- W2949276744 cites W2964113120 @default.
- W2949276744 cites W3133236490 @default.
- W2949276744 hasPublicationYear "2019" @default.
- W2949276744 type Work @default.
- W2949276744 sameAs 2949276744 @default.
- W2949276744 citedByCount "1" @default.
- W2949276744 countsByYear W29492767442020 @default.
- W2949276744 crossrefType "posted-content" @default.
- W2949276744 hasAuthorship W2949276744A5016038041 @default.
- W2949276744 hasAuthorship W2949276744A5047903148 @default.
- W2949276744 hasAuthorship W2949276744A5071784683 @default.
- W2949276744 hasAuthorship W2949276744A5091227928 @default.
- W2949276744 hasConcept C105795698 @default.
- W2949276744 hasConcept C107673813 @default.
- W2949276744 hasConcept C111472728 @default.
- W2949276744 hasConcept C11671645 @default.
- W2949276744 hasConcept C119857082 @default.
- W2949276744 hasConcept C121332964 @default.
- W2949276744 hasConcept C138885662 @default.
- W2949276744 hasConcept C149782125 @default.
- W2949276744 hasConcept C151406439 @default.
- W2949276744 hasConcept C154945302 @default.
- W2949276744 hasConcept C158600405 @default.
- W2949276744 hasConcept C160234255 @default.
- W2949276744 hasConcept C163504300 @default.
- W2949276744 hasConcept C189950617 @default.
- W2949276744 hasConcept C2776214188 @default.
- W2949276744 hasConcept C33923547 @default.
- W2949276744 hasConcept C41008148 @default.
- W2949276744 hasConcept C62520636 @default.
- W2949276744 hasConcept C64357122 @default.
- W2949276744 hasConcept C72434380 @default.
- W2949276744 hasConceptScore W2949276744C105795698 @default.
- W2949276744 hasConceptScore W2949276744C107673813 @default.
- W2949276744 hasConceptScore W2949276744C111472728 @default.
- W2949276744 hasConceptScore W2949276744C11671645 @default.
- W2949276744 hasConceptScore W2949276744C119857082 @default.
- W2949276744 hasConceptScore W2949276744C121332964 @default.
- W2949276744 hasConceptScore W2949276744C138885662 @default.
- W2949276744 hasConceptScore W2949276744C149782125 @default.
- W2949276744 hasConceptScore W2949276744C151406439 @default.
- W2949276744 hasConceptScore W2949276744C154945302 @default.
- W2949276744 hasConceptScore W2949276744C158600405 @default.
- W2949276744 hasConceptScore W2949276744C160234255 @default.
- W2949276744 hasConceptScore W2949276744C163504300 @default.
- W2949276744 hasConceptScore W2949276744C189950617 @default.
- W2949276744 hasConceptScore W2949276744C2776214188 @default.
- W2949276744 hasConceptScore W2949276744C33923547 @default.
- W2949276744 hasConceptScore W2949276744C41008148 @default.
- W2949276744 hasConceptScore W2949276744C62520636 @default.
- W2949276744 hasConceptScore W2949276744C64357122 @default.
- W2949276744 hasConceptScore W2949276744C72434380 @default.
- W2949276744 hasLocation W29492767441 @default.
- W2949276744 hasOpenAccess W2949276744 @default.
- W2949276744 hasPrimaryLocation W29492767441 @default.