Matches in SemOpenAlex for { <https://semopenalex.org/work/W2949277509> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W2949277509 abstract "For an action $alpha$ of a group $G$ on an algebra $R$ (over $Bbb C$), the crossed product $Rtimes_alpha G$ is the vector space of $R$-valued functions with finite support in $G$, together with the twisted convolution product given by $$(xi eta)(p) = sum_{q in G} xi(q) alpha_q (eta (q^{-1}p))$$ where $pin G$. This construction has been extended to the theory of Hopf algebras. Given an action of a Hopf algebra $A$ on an algebra $R$, it is possible to make the tensor product $Rot A$ into an algebra by using a twisted product, involving the action. In this case, the algebra is called the smash product and denoted by $R# A$. In the group case, the action $alpha$ of $G$ on $R$ yields an action of the group algebra $Bbb C G$ as a Hopf algebra on $R$ and the crossed $Rtimes_alpha G$ coincides with the smash product $R# Bbb C G$. In this paper we extend the theory of actions of Hopf algebras to actions of multiplier Hopf algebras. We also construct the smash product and we obtain results very similar as in the original situation for Hopf algebras. The main result in the paper is a duality theorem for such actions. We consider dual pairs of multiplier Hopf algebras to formulate this duality theorem. We prove a result in the case of an algebraic quantum group and its dual. The more general case is only stated and will be proven in a separate paper on coactions. These duality theorems for actions are substantial generalizations of the corresponding theorem for Hopf algebras. Also the techniques that are used here to prove this result are slightly different and simpler." @default.
- W2949277509 created "2019-06-27" @default.
- W2949277509 creator A5027202272 @default.
- W2949277509 creator A5035072888 @default.
- W2949277509 creator A5050898072 @default.
- W2949277509 date "1998-03-02" @default.
- W2949277509 modified "2023-09-27" @default.
- W2949277509 title "Actions of Multiplier Hopf Algebras" @default.
- W2949277509 cites W145423441 @default.
- W2949277509 cites W1500084468 @default.
- W2949277509 cites W1557857086 @default.
- W2949277509 cites W175896080 @default.
- W2949277509 cites W2004632456 @default.
- W2949277509 cites W2008919010 @default.
- W2949277509 cites W2016283106 @default.
- W2949277509 cites W2027701523 @default.
- W2949277509 cites W2037328702 @default.
- W2949277509 cites W2050236291 @default.
- W2949277509 cites W2084069609 @default.
- W2949277509 cites W2101145108 @default.
- W2949277509 cites W2153586061 @default.
- W2949277509 cites W2612451553 @default.
- W2949277509 hasPublicationYear "1998" @default.
- W2949277509 type Work @default.
- W2949277509 sameAs 2949277509 @default.
- W2949277509 citedByCount "1" @default.
- W2949277509 crossrefType "posted-content" @default.
- W2949277509 hasAuthorship W2949277509A5027202272 @default.
- W2949277509 hasAuthorship W2949277509A5035072888 @default.
- W2949277509 hasAuthorship W2949277509A5050898072 @default.
- W2949277509 hasConcept C121332964 @default.
- W2949277509 hasConcept C124584101 @default.
- W2949277509 hasConcept C130856480 @default.
- W2949277509 hasConcept C136119220 @default.
- W2949277509 hasConcept C138354692 @default.
- W2949277509 hasConcept C139719470 @default.
- W2949277509 hasConcept C14394260 @default.
- W2949277509 hasConcept C148647251 @default.
- W2949277509 hasConcept C162324750 @default.
- W2949277509 hasConcept C1680195 @default.
- W2949277509 hasConcept C202444582 @default.
- W2949277509 hasConcept C2524010 @default.
- W2949277509 hasConcept C2776379255 @default.
- W2949277509 hasConcept C2781311116 @default.
- W2949277509 hasConcept C29712632 @default.
- W2949277509 hasConcept C33923547 @default.
- W2949277509 hasConcept C51255310 @default.
- W2949277509 hasConcept C55192134 @default.
- W2949277509 hasConcept C62520636 @default.
- W2949277509 hasConcept C90673727 @default.
- W2949277509 hasConceptScore W2949277509C121332964 @default.
- W2949277509 hasConceptScore W2949277509C124584101 @default.
- W2949277509 hasConceptScore W2949277509C130856480 @default.
- W2949277509 hasConceptScore W2949277509C136119220 @default.
- W2949277509 hasConceptScore W2949277509C138354692 @default.
- W2949277509 hasConceptScore W2949277509C139719470 @default.
- W2949277509 hasConceptScore W2949277509C14394260 @default.
- W2949277509 hasConceptScore W2949277509C148647251 @default.
- W2949277509 hasConceptScore W2949277509C162324750 @default.
- W2949277509 hasConceptScore W2949277509C1680195 @default.
- W2949277509 hasConceptScore W2949277509C202444582 @default.
- W2949277509 hasConceptScore W2949277509C2524010 @default.
- W2949277509 hasConceptScore W2949277509C2776379255 @default.
- W2949277509 hasConceptScore W2949277509C2781311116 @default.
- W2949277509 hasConceptScore W2949277509C29712632 @default.
- W2949277509 hasConceptScore W2949277509C33923547 @default.
- W2949277509 hasConceptScore W2949277509C51255310 @default.
- W2949277509 hasConceptScore W2949277509C55192134 @default.
- W2949277509 hasConceptScore W2949277509C62520636 @default.
- W2949277509 hasConceptScore W2949277509C90673727 @default.
- W2949277509 hasLocation W29492775091 @default.
- W2949277509 hasOpenAccess W2949277509 @default.
- W2949277509 hasPrimaryLocation W29492775091 @default.
- W2949277509 hasRelatedWork W1005040146 @default.
- W2949277509 hasRelatedWork W142111801 @default.
- W2949277509 hasRelatedWork W1527863888 @default.
- W2949277509 hasRelatedWork W1579013843 @default.
- W2949277509 hasRelatedWork W1600438828 @default.
- W2949277509 hasRelatedWork W1996034052 @default.
- W2949277509 hasRelatedWork W2006279941 @default.
- W2949277509 hasRelatedWork W2017898582 @default.
- W2949277509 hasRelatedWork W2072158264 @default.
- W2949277509 hasRelatedWork W2078482891 @default.
- W2949277509 hasRelatedWork W2141033903 @default.
- W2949277509 hasRelatedWork W2165750393 @default.
- W2949277509 hasRelatedWork W2271401778 @default.
- W2949277509 hasRelatedWork W2952341727 @default.
- W2949277509 hasRelatedWork W2953085508 @default.
- W2949277509 hasRelatedWork W2962599193 @default.
- W2949277509 hasRelatedWork W2963632686 @default.
- W2949277509 hasRelatedWork W3099290745 @default.
- W2949277509 hasRelatedWork W3109928785 @default.
- W2949277509 hasRelatedWork W8727237 @default.
- W2949277509 isParatext "false" @default.
- W2949277509 isRetracted "false" @default.
- W2949277509 magId "2949277509" @default.
- W2949277509 workType "article" @default.