Matches in SemOpenAlex for { <https://semopenalex.org/work/W2949301197> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W2949301197 abstract "This paper describes the technology of neural network application to solve the problem of information security incidents forecasting. We describe the general problem of analyzing and predicting time series in a graphical and mathematical setting. To solve this problem, it is proposed to use a neural network model. To solve the task of forecasting a time series of information security incidents, data are generated and described on the basis of which the neural network is trained. We offer a neural network structure, train the neural network, estimate it's adequacy and forecasting ability. We show the possibility of effective use of a neural network model as a part of an intelligent forecasting system." @default.
- W2949301197 created "2019-06-27" @default.
- W2949301197 creator A5034028470 @default.
- W2949301197 creator A5051985819 @default.
- W2949301197 creator A5064054924 @default.
- W2949301197 date "2018-05-01" @default.
- W2949301197 modified "2023-09-26" @default.
- W2949301197 title "Neural Network Model for Information Security Incident Forecasting" @default.
- W2949301197 cites W1519332008 @default.
- W2949301197 cites W1538951471 @default.
- W2949301197 cites W1582710624 @default.
- W2949301197 cites W1605510697 @default.
- W2949301197 cites W1985035155 @default.
- W2949301197 cites W1985815335 @default.
- W2949301197 cites W1992050221 @default.
- W2949301197 cites W2019072752 @default.
- W2949301197 cites W2040263621 @default.
- W2949301197 cites W2050262998 @default.
- W2949301197 cites W2069409074 @default.
- W2949301197 cites W2076370288 @default.
- W2949301197 cites W2086694651 @default.
- W2949301197 cites W2103780786 @default.
- W2949301197 cites W2105007656 @default.
- W2949301197 cites W2135496064 @default.
- W2949301197 cites W2165934199 @default.
- W2949301197 cites W2169134378 @default.
- W2949301197 cites W2258950249 @default.
- W2949301197 cites W2265055144 @default.
- W2949301197 cites W2573768434 @default.
- W2949301197 cites W2574208526 @default.
- W2949301197 cites W2585479015 @default.
- W2949301197 cites W2610275900 @default.
- W2949301197 cites W2611410537 @default.
- W2949301197 cites W2743126243 @default.
- W2949301197 cites W2756330622 @default.
- W2949301197 cites W2774246659 @default.
- W2949301197 cites W2779539231 @default.
- W2949301197 cites W3124459484 @default.
- W2949301197 doi "https://doi.org/10.1109/icieam.2018.8728734" @default.
- W2949301197 hasPublicationYear "2018" @default.
- W2949301197 type Work @default.
- W2949301197 sameAs 2949301197 @default.
- W2949301197 citedByCount "0" @default.
- W2949301197 crossrefType "proceedings-article" @default.
- W2949301197 hasAuthorship W2949301197A5034028470 @default.
- W2949301197 hasAuthorship W2949301197A5051985819 @default.
- W2949301197 hasAuthorship W2949301197A5064054924 @default.
- W2949301197 hasConcept C119857082 @default.
- W2949301197 hasConcept C124101348 @default.
- W2949301197 hasConcept C151406439 @default.
- W2949301197 hasConcept C154945302 @default.
- W2949301197 hasConcept C173079777 @default.
- W2949301197 hasConcept C175202392 @default.
- W2949301197 hasConcept C177973122 @default.
- W2949301197 hasConcept C41008148 @default.
- W2949301197 hasConcept C50644808 @default.
- W2949301197 hasConceptScore W2949301197C119857082 @default.
- W2949301197 hasConceptScore W2949301197C124101348 @default.
- W2949301197 hasConceptScore W2949301197C151406439 @default.
- W2949301197 hasConceptScore W2949301197C154945302 @default.
- W2949301197 hasConceptScore W2949301197C173079777 @default.
- W2949301197 hasConceptScore W2949301197C175202392 @default.
- W2949301197 hasConceptScore W2949301197C177973122 @default.
- W2949301197 hasConceptScore W2949301197C41008148 @default.
- W2949301197 hasConceptScore W2949301197C50644808 @default.
- W2949301197 hasLocation W29493011971 @default.
- W2949301197 hasOpenAccess W2949301197 @default.
- W2949301197 hasPrimaryLocation W29493011971 @default.
- W2949301197 hasRelatedWork W1523884981 @default.
- W2949301197 hasRelatedWork W1603399799 @default.
- W2949301197 hasRelatedWork W1975938969 @default.
- W2949301197 hasRelatedWork W1999460151 @default.
- W2949301197 hasRelatedWork W2124207829 @default.
- W2949301197 hasRelatedWork W2148149441 @default.
- W2949301197 hasRelatedWork W2388123479 @default.
- W2949301197 hasRelatedWork W2513133488 @default.
- W2949301197 hasRelatedWork W2530007823 @default.
- W2949301197 hasRelatedWork W2547728696 @default.
- W2949301197 hasRelatedWork W2564502800 @default.
- W2949301197 hasRelatedWork W2615696666 @default.
- W2949301197 hasRelatedWork W2883732939 @default.
- W2949301197 hasRelatedWork W2914553813 @default.
- W2949301197 hasRelatedWork W2921810866 @default.
- W2949301197 hasRelatedWork W3010941533 @default.
- W2949301197 hasRelatedWork W3126449953 @default.
- W2949301197 hasRelatedWork W37674866 @default.
- W2949301197 hasRelatedWork W579208227 @default.
- W2949301197 hasRelatedWork W2888028257 @default.
- W2949301197 isParatext "false" @default.
- W2949301197 isRetracted "false" @default.
- W2949301197 magId "2949301197" @default.
- W2949301197 workType "article" @default.