Matches in SemOpenAlex for { <https://semopenalex.org/work/W2949305085> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W2949305085 abstract "Recently, some studies have utilized the Markov Decision Process for diversifying (MDP-DIV) the search results in information retrieval. Though promising performances can be delivered, MDP-DIV suffers from a very slow convergence, which hinders its usability in real applications. In this paper, we aim to promote the performance of MDP-DIV by speeding up the convergence rate without much accuracy sacrifice. The slow convergence is incurred by two main reasons: the large action space and data scarcity. On the one hand, the sequential decision making at each position needs to evaluate the query-document relevance for all the candidate set, which results in a huge searching space for MDP; on the other hand, due to the data scarcity, the agent has to proceed more trial and error interactions with the environment. To tackle this problem, we propose MDP-DIV-kNN and MDP-DIV-NTN methods. The MDP-DIV-kNN method adopts a $k$ nearest neighbor strategy, i.e., discarding the $k$ nearest neighbors of the recently-selected action (document), to reduce the diversification searching space. The MDP-DIV-NTN employs a pre-trained diversification neural tensor network (NTN-DIV) as the evaluation model, and combines the results with MDP to produce the final ranking solution. The experiment results demonstrate that the two proposed methods indeed accelerate the convergence rate of the MDP-DIV, which is 3x faster, while the accuracies produced barely degrade, or even are better." @default.
- W2949305085 created "2019-06-27" @default.
- W2949305085 creator A5002523892 @default.
- W2949305085 creator A5019541869 @default.
- W2949305085 creator A5054330014 @default.
- W2949305085 creator A5060470951 @default.
- W2949305085 creator A5063318300 @default.
- W2949305085 creator A5083350101 @default.
- W2949305085 date "2018-02-23" @default.
- W2949305085 modified "2023-09-26" @default.
- W2949305085 title "Novel Approaches to Accelerating the Convergence Rate of Markov Decision Process for Search Result Diversification" @default.
- W2949305085 cites W2005084129 @default.
- W2949305085 cites W2023188792 @default.
- W2949305085 cites W2047952076 @default.
- W2949305085 cites W2055007736 @default.
- W2949305085 cites W2079313653 @default.
- W2949305085 cites W2083305840 @default.
- W2949305085 cites W2088121730 @default.
- W2949305085 cites W2093495945 @default.
- W2949305085 cites W2107126505 @default.
- W2949305085 cites W2119567691 @default.
- W2949305085 cites W2121863487 @default.
- W2949305085 cites W2131744502 @default.
- W2949305085 cites W2132314908 @default.
- W2949305085 cites W2138108551 @default.
- W2949305085 cites W2157391629 @default.
- W2949305085 cites W2197919320 @default.
- W2949305085 cites W2271840356 @default.
- W2949305085 cites W2337233909 @default.
- W2949305085 cites W2512370135 @default.
- W2949305085 cites W2739916191 @default.
- W2949305085 cites W2740384884 @default.
- W2949305085 doi "https://doi.org/10.48550/arxiv.1802.08401" @default.
- W2949305085 hasPublicationYear "2018" @default.
- W2949305085 type Work @default.
- W2949305085 sameAs 2949305085 @default.
- W2949305085 citedByCount "0" @default.
- W2949305085 crossrefType "posted-content" @default.
- W2949305085 hasAuthorship W2949305085A5002523892 @default.
- W2949305085 hasAuthorship W2949305085A5019541869 @default.
- W2949305085 hasAuthorship W2949305085A5054330014 @default.
- W2949305085 hasAuthorship W2949305085A5060470951 @default.
- W2949305085 hasAuthorship W2949305085A5063318300 @default.
- W2949305085 hasAuthorship W2949305085A5083350101 @default.
- W2949305085 hasBestOaLocation W29493050851 @default.
- W2949305085 hasConcept C105795698 @default.
- W2949305085 hasConcept C106189395 @default.
- W2949305085 hasConcept C119857082 @default.
- W2949305085 hasConcept C124101348 @default.
- W2949305085 hasConcept C126255220 @default.
- W2949305085 hasConcept C154945302 @default.
- W2949305085 hasConcept C159886148 @default.
- W2949305085 hasConcept C162324750 @default.
- W2949305085 hasConcept C189430467 @default.
- W2949305085 hasConcept C26517878 @default.
- W2949305085 hasConcept C2777303404 @default.
- W2949305085 hasConcept C33923547 @default.
- W2949305085 hasConcept C38652104 @default.
- W2949305085 hasConcept C41008148 @default.
- W2949305085 hasConcept C50522688 @default.
- W2949305085 hasConcept C57869625 @default.
- W2949305085 hasConceptScore W2949305085C105795698 @default.
- W2949305085 hasConceptScore W2949305085C106189395 @default.
- W2949305085 hasConceptScore W2949305085C119857082 @default.
- W2949305085 hasConceptScore W2949305085C124101348 @default.
- W2949305085 hasConceptScore W2949305085C126255220 @default.
- W2949305085 hasConceptScore W2949305085C154945302 @default.
- W2949305085 hasConceptScore W2949305085C159886148 @default.
- W2949305085 hasConceptScore W2949305085C162324750 @default.
- W2949305085 hasConceptScore W2949305085C189430467 @default.
- W2949305085 hasConceptScore W2949305085C26517878 @default.
- W2949305085 hasConceptScore W2949305085C2777303404 @default.
- W2949305085 hasConceptScore W2949305085C33923547 @default.
- W2949305085 hasConceptScore W2949305085C38652104 @default.
- W2949305085 hasConceptScore W2949305085C41008148 @default.
- W2949305085 hasConceptScore W2949305085C50522688 @default.
- W2949305085 hasConceptScore W2949305085C57869625 @default.
- W2949305085 hasLocation W29493050851 @default.
- W2949305085 hasOpenAccess W2949305085 @default.
- W2949305085 hasPrimaryLocation W29493050851 @default.
- W2949305085 hasRelatedWork W1626977535 @default.
- W2949305085 hasRelatedWork W1990452411 @default.
- W2949305085 hasRelatedWork W1994682696 @default.
- W2949305085 hasRelatedWork W1995828591 @default.
- W2949305085 hasRelatedWork W2096989594 @default.
- W2949305085 hasRelatedWork W2102681657 @default.
- W2949305085 hasRelatedWork W2128702080 @default.
- W2949305085 hasRelatedWork W2156021013 @default.
- W2949305085 hasRelatedWork W2161367706 @default.
- W2949305085 hasRelatedWork W3013781205 @default.
- W2949305085 isParatext "false" @default.
- W2949305085 isRetracted "false" @default.
- W2949305085 magId "2949305085" @default.
- W2949305085 workType "article" @default.