Matches in SemOpenAlex for { <https://semopenalex.org/work/W2949314247> ?p ?o ?g. }
- W2949314247 abstract "A graph spanner is a fundamental graph structure that faithfully preserves the pairwise distances in the input graph up to a small multiplicative stretch. The common objective in the computation of spanners is to achieve the best-known existential size-stretch trade-off efficiently. Classical models and algorithmic analysis of graph spanners essentially assume that the algorithm can read the input graph, construct the desired spanner, and write the answer to the output tape. However, when considering massive graphs containing millions or even billions of nodes not only the input graph, but also the output spanner might be too large for a single processor to store. To tackle this challenge, we initiate the study of local computation algorithms (LCAs) for graph spanners in general graphs, where the algorithm should locally decide whether a given edge $(u,v) in E$ belongs to the output spanner. Such LCAs give the user the `illusion' that a specific sparse spanner for the graph is maintained, without ever fully computing it. We present the following results: -For general $n$-vertex graphs and $r in {2,3}$, there exists an LCA for $(2r-1)$-spanners with $widetilde{O}(n^{1+1/r})$ edges and sublinear probe complexity of $widetilde{O}(n^{1-1/2r})$. These size/stretch tradeoffs are best possible (up to polylogarithmic factors). -For every $k geq 1$ and $n$-vertex graph with maximum degree $Delta$, there exists an LCA for $O(k^2)$ spanners with $widetilde{O}(n^{1+1/k})$ edges, probe complexity of $widetilde{O}(Delta^4 n^{2/3})$, and random seed of size $mathrm{polylog}(n)$. This improves upon, and extends the work of [Lenzen-Levi, 2018]. We also complement our results by providing a polynomial lower bound on the probe complexity of LCAs for graph spanners that holds even for the simpler task of computing a sparse connected subgraph with $o(m)$ edges." @default.
- W2949314247 created "2019-06-27" @default.
- W2949314247 creator A5022875077 @default.
- W2949314247 creator A5041567023 @default.
- W2949314247 creator A5052582756 @default.
- W2949314247 creator A5076142615 @default.
- W2949314247 date "2019-02-21" @default.
- W2949314247 modified "2023-09-27" @default.
- W2949314247 title "Local Computation Algorithms for Spanners" @default.
- W2949314247 cites W1515111191 @default.
- W2949314247 cites W1568961751 @default.
- W2949314247 cites W181128013 @default.
- W2949314247 cites W1970630090 @default.
- W2949314247 cites W1999617330 @default.
- W2949314247 cites W2005580106 @default.
- W2949314247 cites W2018963243 @default.
- W2949314247 cites W2033447978 @default.
- W2949314247 cites W2033607935 @default.
- W2949314247 cites W2037793233 @default.
- W2949314247 cites W2044246186 @default.
- W2949314247 cites W2147599477 @default.
- W2949314247 cites W2162831161 @default.
- W2949314247 cites W2444233166 @default.
- W2949314247 cites W2464539161 @default.
- W2949314247 cites W2652214000 @default.
- W2949314247 cites W2885760180 @default.
- W2949314247 cites W2952664231 @default.
- W2949314247 cites W2953062565 @default.
- W2949314247 cites W2961211810 @default.
- W2949314247 cites W3020850430 @default.
- W2949314247 cites W3099044340 @default.
- W2949314247 cites W437401151 @default.
- W2949314247 hasPublicationYear "2019" @default.
- W2949314247 type Work @default.
- W2949314247 sameAs 2949314247 @default.
- W2949314247 citedByCount "2" @default.
- W2949314247 countsByYear W29493142472020 @default.
- W2949314247 countsByYear W29493142472021 @default.
- W2949314247 crossrefType "posted-content" @default.
- W2949314247 hasAuthorship W2949314247A5022875077 @default.
- W2949314247 hasAuthorship W2949314247A5041567023 @default.
- W2949314247 hasAuthorship W2949314247A5052582756 @default.
- W2949314247 hasAuthorship W2949314247A5076142615 @default.
- W2949314247 hasConcept C11413529 @default.
- W2949314247 hasConcept C114614502 @default.
- W2949314247 hasConcept C117160843 @default.
- W2949314247 hasConcept C118615104 @default.
- W2949314247 hasConcept C120314980 @default.
- W2949314247 hasConcept C132525143 @default.
- W2949314247 hasConcept C134306372 @default.
- W2949314247 hasConcept C154945302 @default.
- W2949314247 hasConcept C184898388 @default.
- W2949314247 hasConcept C2779585601 @default.
- W2949314247 hasConcept C33923547 @default.
- W2949314247 hasConcept C41008148 @default.
- W2949314247 hasConcept C42747912 @default.
- W2949314247 hasConcept C45374587 @default.
- W2949314247 hasConcept C80444323 @default.
- W2949314247 hasConcept C80899671 @default.
- W2949314247 hasConceptScore W2949314247C11413529 @default.
- W2949314247 hasConceptScore W2949314247C114614502 @default.
- W2949314247 hasConceptScore W2949314247C117160843 @default.
- W2949314247 hasConceptScore W2949314247C118615104 @default.
- W2949314247 hasConceptScore W2949314247C120314980 @default.
- W2949314247 hasConceptScore W2949314247C132525143 @default.
- W2949314247 hasConceptScore W2949314247C134306372 @default.
- W2949314247 hasConceptScore W2949314247C154945302 @default.
- W2949314247 hasConceptScore W2949314247C184898388 @default.
- W2949314247 hasConceptScore W2949314247C2779585601 @default.
- W2949314247 hasConceptScore W2949314247C33923547 @default.
- W2949314247 hasConceptScore W2949314247C41008148 @default.
- W2949314247 hasConceptScore W2949314247C42747912 @default.
- W2949314247 hasConceptScore W2949314247C45374587 @default.
- W2949314247 hasConceptScore W2949314247C80444323 @default.
- W2949314247 hasConceptScore W2949314247C80899671 @default.
- W2949314247 hasLocation W29493142471 @default.
- W2949314247 hasOpenAccess W2949314247 @default.
- W2949314247 hasPrimaryLocation W29493142471 @default.
- W2949314247 hasRelatedWork W1492991846 @default.
- W2949314247 hasRelatedWork W2081449822 @default.
- W2949314247 hasRelatedWork W2083522899 @default.
- W2949314247 hasRelatedWork W2261198898 @default.
- W2949314247 hasRelatedWork W2399422447 @default.
- W2949314247 hasRelatedWork W2399577022 @default.
- W2949314247 hasRelatedWork W2599812138 @default.
- W2949314247 hasRelatedWork W2767855020 @default.
- W2949314247 hasRelatedWork W2774136853 @default.
- W2949314247 hasRelatedWork W2900140513 @default.
- W2949314247 hasRelatedWork W2911509976 @default.
- W2949314247 hasRelatedWork W2949064752 @default.
- W2949314247 hasRelatedWork W2952033913 @default.
- W2949314247 hasRelatedWork W2952970393 @default.
- W2949314247 hasRelatedWork W2963161417 @default.
- W2949314247 hasRelatedWork W2963857389 @default.
- W2949314247 hasRelatedWork W2984766424 @default.
- W2949314247 hasRelatedWork W3045167503 @default.
- W2949314247 hasRelatedWork W3165096249 @default.
- W2949314247 hasRelatedWork W3082664529 @default.
- W2949314247 isParatext "false" @default.
- W2949314247 isRetracted "false" @default.