Matches in SemOpenAlex for { <https://semopenalex.org/work/W2949513994> ?p ?o ?g. }
- W2949513994 endingPage "829" @default.
- W2949513994 startingPage "829" @default.
- W2949513994 abstract "Radiographic assessment with magnetic resonance imaging (MRI) is widely used to characterize gliomas, which represent 80% of all primary malignant brain tumors. Unfortunately, glioma biology is marked by heterogeneous angiogenesis, cellular proliferation, cellular invasion, and apoptosis. This translates into varying degrees of enhancement, edema, and necrosis, making reliable imaging assessment challenging. Deep learning, a subset of machine learning artificial intelligence, has gained traction as a method, which has seen effective employment in solving image-based problems, including those in medical imaging. This review seeks to summarize current deep learning applications used in the field of glioma detection and outcome prediction and will focus on (1) pre- and post-operative tumor segmentation, (2) genetic characterization of tissue, and (3) prognostication. We demonstrate that deep learning methods of segmenting, characterizing, grading, and predicting survival in gliomas are promising opportunities that may enhance both research and clinical activities." @default.
- W2949513994 created "2019-06-27" @default.
- W2949513994 creator A5001224785 @default.
- W2949513994 creator A5001367440 @default.
- W2949513994 creator A5033576523 @default.
- W2949513994 creator A5041536073 @default.
- W2949513994 creator A5045127913 @default.
- W2949513994 creator A5047821572 @default.
- W2949513994 creator A5049843981 @default.
- W2949513994 creator A5056778125 @default.
- W2949513994 creator A5058289918 @default.
- W2949513994 creator A5064401158 @default.
- W2949513994 creator A5066820418 @default.
- W2949513994 date "2019-06-14" @default.
- W2949513994 modified "2023-09-30" @default.
- W2949513994 title "Optimizing Neuro-Oncology Imaging: A Review of Deep Learning Approaches for Glioma Imaging" @default.
- W2949513994 cites W149211460 @default.
- W2949513994 cites W1503917069 @default.
- W2949513994 cites W1641498739 @default.
- W2949513994 cites W1884191083 @default.
- W2949513994 cites W1899274600 @default.
- W2949513994 cites W1947046122 @default.
- W2949513994 cites W1987091798 @default.
- W2949513994 cites W1992812368 @default.
- W2949513994 cites W1996313459 @default.
- W2949513994 cites W2025183726 @default.
- W2949513994 cites W2060810197 @default.
- W2949513994 cites W2060867475 @default.
- W2949513994 cites W2096221839 @default.
- W2949513994 cites W2097475056 @default.
- W2949513994 cites W2098812986 @default.
- W2949513994 cites W2099164578 @default.
- W2949513994 cites W2105100844 @default.
- W2949513994 cites W2105348749 @default.
- W2949513994 cites W2108090165 @default.
- W2949513994 cites W2110254666 @default.
- W2949513994 cites W2110727651 @default.
- W2949513994 cites W2111389142 @default.
- W2949513994 cites W2116531017 @default.
- W2949513994 cites W2118311655 @default.
- W2949513994 cites W2119440128 @default.
- W2949513994 cites W2122020836 @default.
- W2949513994 cites W2126817554 @default.
- W2949513994 cites W2132513126 @default.
- W2949513994 cites W2140510570 @default.
- W2949513994 cites W2145848467 @default.
- W2949513994 cites W2148977460 @default.
- W2949513994 cites W2149080643 @default.
- W2949513994 cites W2157113469 @default.
- W2949513994 cites W2160023322 @default.
- W2949513994 cites W2162643152 @default.
- W2949513994 cites W2167896953 @default.
- W2949513994 cites W2174661749 @default.
- W2949513994 cites W2208071854 @default.
- W2949513994 cites W2221563957 @default.
- W2949513994 cites W2366536035 @default.
- W2949513994 cites W2479624442 @default.
- W2949513994 cites W2525157777 @default.
- W2949513994 cites W2529567133 @default.
- W2949513994 cites W2538556778 @default.
- W2949513994 cites W2566406401 @default.
- W2949513994 cites W2567082165 @default.
- W2949513994 cites W2593808165 @default.
- W2949513994 cites W2611506589 @default.
- W2949513994 cites W2614549267 @default.
- W2949513994 cites W2726554069 @default.
- W2949513994 cites W2734369741 @default.
- W2949513994 cites W2743501370 @default.
- W2949513994 cites W2763355946 @default.
- W2949513994 cites W2769012178 @default.
- W2949513994 cites W2770261599 @default.
- W2949513994 cites W2802159733 @default.
- W2949513994 cites W2810349670 @default.
- W2949513994 cites W2883420106 @default.
- W2949513994 cites W2885006767 @default.
- W2949513994 cites W2886789853 @default.
- W2949513994 cites W2888679364 @default.
- W2949513994 cites W2914646338 @default.
- W2949513994 cites W2919115771 @default.
- W2949513994 cites W4205947740 @default.
- W2949513994 cites W4245392732 @default.
- W2949513994 doi "https://doi.org/10.3390/cancers11060829" @default.
- W2949513994 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6627902" @default.
- W2949513994 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31207930" @default.
- W2949513994 hasPublicationYear "2019" @default.
- W2949513994 type Work @default.
- W2949513994 sameAs 2949513994 @default.
- W2949513994 citedByCount "69" @default.
- W2949513994 countsByYear W29495139942019 @default.
- W2949513994 countsByYear W29495139942020 @default.
- W2949513994 countsByYear W29495139942021 @default.
- W2949513994 countsByYear W29495139942022 @default.
- W2949513994 countsByYear W29495139942023 @default.
- W2949513994 crossrefType "journal-article" @default.
- W2949513994 hasAuthorship W2949513994A5001224785 @default.
- W2949513994 hasAuthorship W2949513994A5001367440 @default.
- W2949513994 hasAuthorship W2949513994A5033576523 @default.
- W2949513994 hasAuthorship W2949513994A5041536073 @default.