Matches in SemOpenAlex for { <https://semopenalex.org/work/W2949539925> ?p ?o ?g. }
- W2949539925 endingPage "81611" @default.
- W2949539925 startingPage "81599" @default.
- W2949539925 abstract "The dimension reduction of large scale high-dimensional data is a challenging task, especially the dimension reduction of face data and the accuracy increment of face recognition in the large scale face recognition system, which may cause large storage space and long recognition time. In order to further reduce the recognition time and the storage space in the large scale face recognition systems, on the basis of the general non-negative matrix factorization based on left semi-tensor (GNMFL) without dimension matching constraints proposed in our previous work, we propose a sparse GNMFL/L (SGNMFL/L) to decompose a large number of face data sets in the large scale face recognition systems, which makes the decomposed base matrix sparser and suppresses the decomposed coefficient matrix. Therefore, the dimension of the basis matrix and the coefficient matrix can be further reduced. Two sets of experiments are conducted to show the effectiveness of the proposed SGNMFL/L on two databases. The experiments are mainly designed to verify the effects of two hyper-parameters on the sparseness of basis matrix factorized by SGNMFL/L, compare the performance of the conventional NMF, sparse NMF (SNMF), GNMFL, and the proposed SGNMFL/L in terms of storage space and time efficiency, and compare their face recognition accuracies with different noises. Both the theoretical derivation and the experimental results show that the proposed SGNMF/L can effectively save the storage space and reduce the computation time while achieving high recognition accuracy and has strong robustness." @default.
- W2949539925 created "2019-06-27" @default.
- W2949539925 creator A5004326219 @default.
- W2949539925 creator A5005833526 @default.
- W2949539925 creator A5016214742 @default.
- W2949539925 creator A5065813999 @default.
- W2949539925 creator A5071134614 @default.
- W2949539925 creator A5082154401 @default.
- W2949539925 date "2019-01-01" @default.
- W2949539925 modified "2023-10-16" @default.
- W2949539925 title "Sparse General Non-Negative Matrix Factorization Based on Left Semi-Tensor Product" @default.
- W2949539925 cites W1787361824 @default.
- W2949539925 cites W1902027874 @default.
- W2949539925 cites W1966478673 @default.
- W2949539925 cites W1976391658 @default.
- W2949539925 cites W1992097008 @default.
- W2949539925 cites W2003780581 @default.
- W2949539925 cites W2012573640 @default.
- W2949539925 cites W2015337504 @default.
- W2949539925 cites W2017288758 @default.
- W2949539925 cites W2023535731 @default.
- W2949539925 cites W2025741957 @default.
- W2949539925 cites W2045080125 @default.
- W2949539925 cites W2056398894 @default.
- W2949539925 cites W2061781238 @default.
- W2949539925 cites W2064751512 @default.
- W2949539925 cites W2072715504 @default.
- W2949539925 cites W2099595379 @default.
- W2949539925 cites W2113728360 @default.
- W2949539925 cites W2165685007 @default.
- W2949539925 cites W2169508700 @default.
- W2949539925 cites W2204202707 @default.
- W2949539925 cites W2214188879 @default.
- W2949539925 cites W2278138779 @default.
- W2949539925 cites W2394548493 @default.
- W2949539925 cites W2510237014 @default.
- W2949539925 cites W2606637053 @default.
- W2949539925 cites W2769472449 @default.
- W2949539925 cites W2780037296 @default.
- W2949539925 cites W2790619088 @default.
- W2949539925 cites W2887183215 @default.
- W2949539925 cites W567151721 @default.
- W2949539925 doi "https://doi.org/10.1109/access.2019.2924140" @default.
- W2949539925 hasPublicationYear "2019" @default.
- W2949539925 type Work @default.
- W2949539925 sameAs 2949539925 @default.
- W2949539925 citedByCount "8" @default.
- W2949539925 countsByYear W29495399252020 @default.
- W2949539925 countsByYear W29495399252023 @default.
- W2949539925 crossrefType "journal-article" @default.
- W2949539925 hasAuthorship W2949539925A5004326219 @default.
- W2949539925 hasAuthorship W2949539925A5005833526 @default.
- W2949539925 hasAuthorship W2949539925A5016214742 @default.
- W2949539925 hasAuthorship W2949539925A5065813999 @default.
- W2949539925 hasAuthorship W2949539925A5071134614 @default.
- W2949539925 hasAuthorship W2949539925A5082154401 @default.
- W2949539925 hasBestOaLocation W29495399251 @default.
- W2949539925 hasConcept C104317684 @default.
- W2949539925 hasConcept C106487976 @default.
- W2949539925 hasConcept C11413529 @default.
- W2949539925 hasConcept C114614502 @default.
- W2949539925 hasConcept C121332964 @default.
- W2949539925 hasConcept C12426560 @default.
- W2949539925 hasConcept C144024400 @default.
- W2949539925 hasConcept C152671427 @default.
- W2949539925 hasConcept C153180895 @default.
- W2949539925 hasConcept C154945302 @default.
- W2949539925 hasConcept C155281189 @default.
- W2949539925 hasConcept C158693339 @default.
- W2949539925 hasConcept C159985019 @default.
- W2949539925 hasConcept C163716315 @default.
- W2949539925 hasConcept C185592680 @default.
- W2949539925 hasConcept C192562407 @default.
- W2949539925 hasConcept C202444582 @default.
- W2949539925 hasConcept C2524010 @default.
- W2949539925 hasConcept C2779304628 @default.
- W2949539925 hasConcept C31510193 @default.
- W2949539925 hasConcept C33676613 @default.
- W2949539925 hasConcept C33923547 @default.
- W2949539925 hasConcept C36289849 @default.
- W2949539925 hasConcept C41008148 @default.
- W2949539925 hasConcept C42355184 @default.
- W2949539925 hasConcept C45374587 @default.
- W2949539925 hasConcept C55493867 @default.
- W2949539925 hasConcept C56372850 @default.
- W2949539925 hasConcept C60866291 @default.
- W2949539925 hasConcept C62520636 @default.
- W2949539925 hasConcept C63479239 @default.
- W2949539925 hasConcept C70518039 @default.
- W2949539925 hasConceptScore W2949539925C104317684 @default.
- W2949539925 hasConceptScore W2949539925C106487976 @default.
- W2949539925 hasConceptScore W2949539925C11413529 @default.
- W2949539925 hasConceptScore W2949539925C114614502 @default.
- W2949539925 hasConceptScore W2949539925C121332964 @default.
- W2949539925 hasConceptScore W2949539925C12426560 @default.
- W2949539925 hasConceptScore W2949539925C144024400 @default.
- W2949539925 hasConceptScore W2949539925C152671427 @default.
- W2949539925 hasConceptScore W2949539925C153180895 @default.