Matches in SemOpenAlex for { <https://semopenalex.org/work/W2949545510> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W2949545510 endingPage "1378" @default.
- W2949545510 startingPage "1378" @default.
- W2949545510 abstract "High-resolution spatiotemporal wind speed mapping is useful for atmospheric environmental monitoring, air quality evaluation and wind power siting. Although modern reanalysis techniques can obtain reliable interpolated surfaces of meteorology at a high temporal resolution, their spatial resolutions are coarse. Local variability of wind speed is difficult to capture due to its volatility. Here, a two-stage approach was developed for robust spatiotemporal estimations of wind speed at a high resolution. The proposed approach consists of geographically weighted ensemble machine learning (Stage 1) and downscaling based on meteorological reanalysis data (Stage 2). The geographically weighted machine learning method is based on three base learners, which are an autoencoder-based deep residual network, XGBoost and random forest, and it incorporates spatial autocorrelation and heterogeneity to boost the ensemble predictions. With reanalysis data, downscaling was introduced in Stage 2 to reduce bias and spatial abrupt (non-natural) variation in the predictions inferred from Stage 1. The autoencoder-based residual network was used in Stage 2 to adjust the difference between the averages of the fine-resolution predicted values and the coarse-resolution reanalysis data to ensure consistency. Using mainland China as a case study, the geographically weighted regression (GWR) ensemble predictions were shown to perform better than individual learners’ predictions (with an approximately 12–16% improvement in R2 and a decrease of 0.14–0.19 m/s in root mean square error). Downscaling further improved the predictions by reducing inconsistency and obtaining better spatial variation (smoothing). The proposed approach can also be applied for the high-resolution spatiotemporal estimation of other meteorological parameters or surface variables involving remote sensing images (i.e. reliable coarsely resolved data), ground monitoring data and other relevant factors." @default.
- W2949545510 created "2019-06-27" @default.
- W2949545510 creator A5019176178 @default.
- W2949545510 date "2019-06-10" @default.
- W2949545510 modified "2023-10-12" @default.
- W2949545510 title "Geographically Weighted Machine Learning and Downscaling for High-Resolution Spatiotemporal Estimations of Wind Speed" @default.
- W2949545510 cites W1973749534 @default.
- W2949545510 cites W1974038018 @default.
- W2949545510 cites W1980398988 @default.
- W2949545510 cites W2013683780 @default.
- W2949545510 cites W2014116727 @default.
- W2949545510 cites W2024692966 @default.
- W2949545510 cites W2051416171 @default.
- W2949545510 cites W2066625239 @default.
- W2949545510 cites W2080504767 @default.
- W2949545510 cites W2088052330 @default.
- W2949545510 cites W2109126214 @default.
- W2949545510 cites W2112340488 @default.
- W2949545510 cites W2113238782 @default.
- W2949545510 cites W2113242816 @default.
- W2949545510 cites W2113756475 @default.
- W2949545510 cites W2121745948 @default.
- W2949545510 cites W2122825543 @default.
- W2949545510 cites W2123575541 @default.
- W2949545510 cites W2148169128 @default.
- W2949545510 cites W2205309814 @default.
- W2949545510 cites W2292421103 @default.
- W2949545510 cites W2302255633 @default.
- W2949545510 cites W2318004685 @default.
- W2949545510 cites W2396871564 @default.
- W2949545510 cites W2602461940 @default.
- W2949545510 cites W2747155557 @default.
- W2949545510 cites W2911964244 @default.
- W2949545510 cites W4238410978 @default.
- W2949545510 doi "https://doi.org/10.3390/rs11111378" @default.
- W2949545510 hasPublicationYear "2019" @default.
- W2949545510 type Work @default.
- W2949545510 sameAs 2949545510 @default.
- W2949545510 citedByCount "36" @default.
- W2949545510 countsByYear W29495455102019 @default.
- W2949545510 countsByYear W29495455102020 @default.
- W2949545510 countsByYear W29495455102021 @default.
- W2949545510 countsByYear W29495455102022 @default.
- W2949545510 countsByYear W29495455102023 @default.
- W2949545510 crossrefType "journal-article" @default.
- W2949545510 hasAuthorship W2949545510A5019176178 @default.
- W2949545510 hasBestOaLocation W29495455101 @default.
- W2949545510 hasConcept C101738243 @default.
- W2949545510 hasConcept C107054158 @default.
- W2949545510 hasConcept C108583219 @default.
- W2949545510 hasConcept C11413529 @default.
- W2949545510 hasConcept C153294291 @default.
- W2949545510 hasConcept C154945302 @default.
- W2949545510 hasConcept C155512373 @default.
- W2949545510 hasConcept C161067210 @default.
- W2949545510 hasConcept C169258074 @default.
- W2949545510 hasConcept C205649164 @default.
- W2949545510 hasConcept C39432304 @default.
- W2949545510 hasConcept C41008148 @default.
- W2949545510 hasConcept C41156917 @default.
- W2949545510 hasConceptScore W2949545510C101738243 @default.
- W2949545510 hasConceptScore W2949545510C107054158 @default.
- W2949545510 hasConceptScore W2949545510C108583219 @default.
- W2949545510 hasConceptScore W2949545510C11413529 @default.
- W2949545510 hasConceptScore W2949545510C153294291 @default.
- W2949545510 hasConceptScore W2949545510C154945302 @default.
- W2949545510 hasConceptScore W2949545510C155512373 @default.
- W2949545510 hasConceptScore W2949545510C161067210 @default.
- W2949545510 hasConceptScore W2949545510C169258074 @default.
- W2949545510 hasConceptScore W2949545510C205649164 @default.
- W2949545510 hasConceptScore W2949545510C39432304 @default.
- W2949545510 hasConceptScore W2949545510C41008148 @default.
- W2949545510 hasConceptScore W2949545510C41156917 @default.
- W2949545510 hasFunder F4320326972 @default.
- W2949545510 hasFunder F4320335595 @default.
- W2949545510 hasIssue "11" @default.
- W2949545510 hasLocation W29495455101 @default.
- W2949545510 hasLocation W29495455102 @default.
- W2949545510 hasOpenAccess W2949545510 @default.
- W2949545510 hasPrimaryLocation W29495455101 @default.
- W2949545510 hasRelatedWork W1567775150 @default.
- W2949545510 hasRelatedWork W2669956259 @default.
- W2949545510 hasRelatedWork W2939353110 @default.
- W2949545510 hasRelatedWork W3165097609 @default.
- W2949545510 hasRelatedWork W3165463024 @default.
- W2949545510 hasRelatedWork W3199069701 @default.
- W2949545510 hasRelatedWork W3209662401 @default.
- W2949545510 hasRelatedWork W4287178339 @default.
- W2949545510 hasRelatedWork W4292874285 @default.
- W2949545510 hasRelatedWork W4327774331 @default.
- W2949545510 hasVolume "11" @default.
- W2949545510 isParatext "false" @default.
- W2949545510 isRetracted "false" @default.
- W2949545510 magId "2949545510" @default.
- W2949545510 workType "article" @default.