Matches in SemOpenAlex for { <https://semopenalex.org/work/W2949585541> ?p ?o ?g. }
- W2949585541 abstract "Aggregated data is commonplace in areas such as epidemiology and demography. For example, census data for a population is usually given as averages defined over time periods or spatial resolutions (cities, regions or countries). In this paper, we present a novel multi-task learning model based on Gaussian processes for joint learning of variables that have been aggregated at different input scales. Our model represents each task as the linear combination of the realizations of latent processes that are integrated at a different scale per task. We are then able to compute the cross-covariance between the different tasks either analytically or numerically. We also allow each task to have a potentially different likelihood model and provide a variational lower bound that can be optimised in a stochastic fashion making our model suitable for larger datasets. We show examples of the model in a synthetic example, a fertility dataset, and an air pollution prediction application." @default.
- W2949585541 created "2019-06-27" @default.
- W2949585541 creator A5007248971 @default.
- W2949585541 creator A5047112337 @default.
- W2949585541 creator A5075525573 @default.
- W2949585541 date "2019-06-22" @default.
- W2949585541 modified "2023-09-27" @default.
- W2949585541 title "Multi-task Learning for Aggregated Data using Gaussian Processes" @default.
- W2949585541 cites W1497675750 @default.
- W2949585541 cites W1533660737 @default.
- W2949585541 cites W1545951971 @default.
- W2949585541 cites W1585754671 @default.
- W2949585541 cites W1607038179 @default.
- W2949585541 cites W1746819321 @default.
- W2949585541 cites W1777124189 @default.
- W2949585541 cites W2014116727 @default.
- W2949585541 cites W2067624665 @default.
- W2949585541 cites W207557899 @default.
- W2949585541 cites W2099768828 @default.
- W2949585541 cites W2103284199 @default.
- W2949585541 cites W2115979064 @default.
- W2949585541 cites W2119595900 @default.
- W2949585541 cites W2143672530 @default.
- W2949585541 cites W2146611938 @default.
- W2949585541 cites W2154997228 @default.
- W2949585541 cites W2166851633 @default.
- W2949585541 cites W2167986580 @default.
- W2949585541 cites W2396871564 @default.
- W2949585541 cites W2525259760 @default.
- W2949585541 cites W2613362751 @default.
- W2949585541 cites W2747170135 @default.
- W2949585541 cites W2804099675 @default.
- W2949585541 cites W2811395263 @default.
- W2949585541 cites W2890736409 @default.
- W2949585541 cites W2962833467 @default.
- W2949585541 cites W2963004790 @default.
- W2949585541 cites W2963385399 @default.
- W2949585541 cites W2963570020 @default.
- W2949585541 cites W2964324211 @default.
- W2949585541 cites W2970040597 @default.
- W2949585541 cites W3138949179 @default.
- W2949585541 cites W654475189 @default.
- W2949585541 cites W2962293963 @default.
- W2949585541 hasPublicationYear "2019" @default.
- W2949585541 type Work @default.
- W2949585541 sameAs 2949585541 @default.
- W2949585541 citedByCount "3" @default.
- W2949585541 countsByYear W29495855412019 @default.
- W2949585541 countsByYear W29495855412020 @default.
- W2949585541 countsByYear W29495855412021 @default.
- W2949585541 crossrefType "posted-content" @default.
- W2949585541 hasAuthorship W2949585541A5007248971 @default.
- W2949585541 hasAuthorship W2949585541A5047112337 @default.
- W2949585541 hasAuthorship W2949585541A5075525573 @default.
- W2949585541 hasConcept C105795698 @default.
- W2949585541 hasConcept C119857082 @default.
- W2949585541 hasConcept C121332964 @default.
- W2949585541 hasConcept C124101348 @default.
- W2949585541 hasConcept C127413603 @default.
- W2949585541 hasConcept C144024400 @default.
- W2949585541 hasConcept C149923435 @default.
- W2949585541 hasConcept C154945302 @default.
- W2949585541 hasConcept C163716315 @default.
- W2949585541 hasConcept C178650346 @default.
- W2949585541 hasConcept C201995342 @default.
- W2949585541 hasConcept C2780451532 @default.
- W2949585541 hasConcept C28006648 @default.
- W2949585541 hasConcept C2908647359 @default.
- W2949585541 hasConcept C33923547 @default.
- W2949585541 hasConcept C41008148 @default.
- W2949585541 hasConcept C61326573 @default.
- W2949585541 hasConcept C62520636 @default.
- W2949585541 hasConceptScore W2949585541C105795698 @default.
- W2949585541 hasConceptScore W2949585541C119857082 @default.
- W2949585541 hasConceptScore W2949585541C121332964 @default.
- W2949585541 hasConceptScore W2949585541C124101348 @default.
- W2949585541 hasConceptScore W2949585541C127413603 @default.
- W2949585541 hasConceptScore W2949585541C144024400 @default.
- W2949585541 hasConceptScore W2949585541C149923435 @default.
- W2949585541 hasConceptScore W2949585541C154945302 @default.
- W2949585541 hasConceptScore W2949585541C163716315 @default.
- W2949585541 hasConceptScore W2949585541C178650346 @default.
- W2949585541 hasConceptScore W2949585541C201995342 @default.
- W2949585541 hasConceptScore W2949585541C2780451532 @default.
- W2949585541 hasConceptScore W2949585541C28006648 @default.
- W2949585541 hasConceptScore W2949585541C2908647359 @default.
- W2949585541 hasConceptScore W2949585541C33923547 @default.
- W2949585541 hasConceptScore W2949585541C41008148 @default.
- W2949585541 hasConceptScore W2949585541C61326573 @default.
- W2949585541 hasConceptScore W2949585541C62520636 @default.
- W2949585541 hasLocation W29495855411 @default.
- W2949585541 hasOpenAccess W2949585541 @default.
- W2949585541 hasPrimaryLocation W29495855411 @default.
- W2949585541 hasRelatedWork W101939087 @default.
- W2949585541 hasRelatedWork W1884762066 @default.
- W2949585541 hasRelatedWork W2011008538 @default.
- W2949585541 hasRelatedWork W2337617599 @default.
- W2949585541 hasRelatedWork W2586777683 @default.
- W2949585541 hasRelatedWork W2609763701 @default.
- W2949585541 hasRelatedWork W2798372101 @default.