Matches in SemOpenAlex for { <https://semopenalex.org/work/W2949614892> ?p ?o ?g. }
- W2949614892 abstract "Automatically annotating column types with knowledge base (KB) concepts is a critical task to gain a basic understanding of web tables. Current methods rely on either table metadata like column name or entity correspondences of cells in the KB, and may fail to deal with growing web tables with incomplete meta information. In this paper we propose a neural network based column type annotation framework named ColNet which is able to integrate KB reasoning and lookup with machine learning and can automatically train Convolutional Neural Networks for prediction. The prediction model not only considers the contextual semantics within a cell using word representation, but also embeds the semantics of a column by learning locality features from multiple cells. The method is evaluated with DBPedia and two different web table datasets, T2Dv2 from the general Web and Limaye from Wikipedia pages, and achieves higher performance than the state-of-the-art approaches." @default.
- W2949614892 created "2019-06-27" @default.
- W2949614892 creator A5028501178 @default.
- W2949614892 creator A5056324053 @default.
- W2949614892 creator A5060350556 @default.
- W2949614892 creator A5085691361 @default.
- W2949614892 date "2018-11-03" @default.
- W2949614892 modified "2023-10-18" @default.
- W2949614892 title "ColNet: Embedding the Semantics of Web Tables for Column Type Prediction" @default.
- W2949614892 cites W102708294 @default.
- W2949614892 cites W1501251778 @default.
- W2949614892 cites W1992479406 @default.
- W2949614892 cites W2020022499 @default.
- W2949614892 cites W2046441607 @default.
- W2949614892 cites W2092364718 @default.
- W2949614892 cites W2104583100 @default.
- W2949614892 cites W2108223890 @default.
- W2949614892 cites W2111869785 @default.
- W2949614892 cites W2229562501 @default.
- W2949614892 cites W2340354588 @default.
- W2949614892 cites W2341748398 @default.
- W2949614892 cites W2342096063 @default.
- W2949614892 cites W2398606196 @default.
- W2949614892 cites W2505532336 @default.
- W2949614892 cites W2522154031 @default.
- W2949614892 cites W2604225376 @default.
- W2949614892 cites W2762307198 @default.
- W2949614892 cites W2788728671 @default.
- W2949614892 cites W2950133940 @default.
- W2949614892 cites W64481094 @default.
- W2949614892 cites W92812941 @default.
- W2949614892 doi "https://doi.org/10.48550/arxiv.1811.01304" @default.
- W2949614892 hasPublicationYear "2018" @default.
- W2949614892 type Work @default.
- W2949614892 sameAs 2949614892 @default.
- W2949614892 citedByCount "3" @default.
- W2949614892 countsByYear W29496148922019 @default.
- W2949614892 countsByYear W29496148922020 @default.
- W2949614892 crossrefType "posted-content" @default.
- W2949614892 hasAuthorship W2949614892A5028501178 @default.
- W2949614892 hasAuthorship W2949614892A5056324053 @default.
- W2949614892 hasAuthorship W2949614892A5060350556 @default.
- W2949614892 hasAuthorship W2949614892A5085691361 @default.
- W2949614892 hasBestOaLocation W29496148921 @default.
- W2949614892 hasConcept C124101348 @default.
- W2949614892 hasConcept C126042441 @default.
- W2949614892 hasConcept C136764020 @default.
- W2949614892 hasConcept C138885662 @default.
- W2949614892 hasConcept C154945302 @default.
- W2949614892 hasConcept C184337299 @default.
- W2949614892 hasConcept C199360897 @default.
- W2949614892 hasConcept C204321447 @default.
- W2949614892 hasConcept C21959979 @default.
- W2949614892 hasConcept C23123220 @default.
- W2949614892 hasConcept C2776321320 @default.
- W2949614892 hasConcept C2780551164 @default.
- W2949614892 hasConcept C41008148 @default.
- W2949614892 hasConcept C41895202 @default.
- W2949614892 hasConcept C45235069 @default.
- W2949614892 hasConcept C76155785 @default.
- W2949614892 hasConcept C81363708 @default.
- W2949614892 hasConcept C90805587 @default.
- W2949614892 hasConcept C93518851 @default.
- W2949614892 hasConceptScore W2949614892C124101348 @default.
- W2949614892 hasConceptScore W2949614892C126042441 @default.
- W2949614892 hasConceptScore W2949614892C136764020 @default.
- W2949614892 hasConceptScore W2949614892C138885662 @default.
- W2949614892 hasConceptScore W2949614892C154945302 @default.
- W2949614892 hasConceptScore W2949614892C184337299 @default.
- W2949614892 hasConceptScore W2949614892C199360897 @default.
- W2949614892 hasConceptScore W2949614892C204321447 @default.
- W2949614892 hasConceptScore W2949614892C21959979 @default.
- W2949614892 hasConceptScore W2949614892C23123220 @default.
- W2949614892 hasConceptScore W2949614892C2776321320 @default.
- W2949614892 hasConceptScore W2949614892C2780551164 @default.
- W2949614892 hasConceptScore W2949614892C41008148 @default.
- W2949614892 hasConceptScore W2949614892C41895202 @default.
- W2949614892 hasConceptScore W2949614892C45235069 @default.
- W2949614892 hasConceptScore W2949614892C76155785 @default.
- W2949614892 hasConceptScore W2949614892C81363708 @default.
- W2949614892 hasConceptScore W2949614892C90805587 @default.
- W2949614892 hasConceptScore W2949614892C93518851 @default.
- W2949614892 hasLocation W29496148921 @default.
- W2949614892 hasLocation W29496148922 @default.
- W2949614892 hasLocation W29496148923 @default.
- W2949614892 hasLocation W29496148924 @default.
- W2949614892 hasOpenAccess W2949614892 @default.
- W2949614892 hasPrimaryLocation W29496148921 @default.
- W2949614892 hasRelatedWork W1554993229 @default.
- W2949614892 hasRelatedWork W1556178152 @default.
- W2949614892 hasRelatedWork W2076264610 @default.
- W2949614892 hasRelatedWork W2146043838 @default.
- W2949614892 hasRelatedWork W2349174110 @default.
- W2949614892 hasRelatedWork W2361349944 @default.
- W2949614892 hasRelatedWork W2381351160 @default.
- W2949614892 hasRelatedWork W2411679502 @default.
- W2949614892 hasRelatedWork W3107474891 @default.
- W2949614892 hasRelatedWork W3214915308 @default.
- W2949614892 isParatext "false" @default.
- W2949614892 isRetracted "false" @default.