Matches in SemOpenAlex for { <https://semopenalex.org/work/W2949644003> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W2949644003 abstract "Accurate detection of the myocardial infarction (MI) area is crucial for early diagnosis planning and follow-up management. In this study, we propose an end-to-end deep-learning algorithm framework (OF-RNN ) to accurately detect the MI area at the pixel level. Our OF-RNN consists of three different function layers: the heart localization layers, which can accurately and automatically crop the region-of-interest (ROI) sequences, including the left ventricle, using the whole cardiac magnetic resonance image sequences; the motion statistical layers, which are used to build a time-series architecture to capture two types of motion features (at the pixel-level) by integrating the local motion features generated by long short-term memory-recurrent neural networks and the global motion features generated by deep optical flows from the whole ROI sequence, which can effectively characterize myocardial physiologic function; and the fully connected discriminate layers, which use stacked auto-encoders to further learn these features, and they use a softmax classifier to build the correspondences from the motion features to the tissue identities (infarction or not) for each pixel. Through the seamless connection of each layer, our OF-RNN can obtain the area, position, and shape of the MI for each patient. Our proposed framework yielded an overall classification accuracy of 94.35% at the pixel level, from 114 clinical subjects. These results indicate the potential of our proposed method in aiding standardized MI assessments." @default.
- W2949644003 created "2019-06-27" @default.
- W2949644003 creator A5000166507 @default.
- W2949644003 creator A5005425933 @default.
- W2949644003 creator A5017953851 @default.
- W2949644003 creator A5025594135 @default.
- W2949644003 creator A5030430000 @default.
- W2949644003 creator A5049053722 @default.
- W2949644003 creator A5055336250 @default.
- W2949644003 creator A5070373092 @default.
- W2949644003 creator A5074582540 @default.
- W2949644003 date "2017-06-10" @default.
- W2949644003 modified "2023-09-25" @default.
- W2949644003 title "Direct detection of pixel-level myocardial infarction areas via a deep-learning algorithm" @default.
- W2949644003 cites W1762798876 @default.
- W2949644003 cites W2030182955 @default.
- W2949644003 cites W2042002769 @default.
- W2949644003 cites W2148516227 @default.
- W2949644003 cites W2232569738 @default.
- W2949644003 cites W2321283863 @default.
- W2949644003 cites W2404602184 @default.
- W2949644003 cites W73684659 @default.
- W2949644003 doi "https://doi.org/10.48550/arxiv.1706.03182" @default.
- W2949644003 hasPublicationYear "2017" @default.
- W2949644003 type Work @default.
- W2949644003 sameAs 2949644003 @default.
- W2949644003 citedByCount "0" @default.
- W2949644003 crossrefType "posted-content" @default.
- W2949644003 hasAuthorship W2949644003A5000166507 @default.
- W2949644003 hasAuthorship W2949644003A5005425933 @default.
- W2949644003 hasAuthorship W2949644003A5017953851 @default.
- W2949644003 hasAuthorship W2949644003A5025594135 @default.
- W2949644003 hasAuthorship W2949644003A5030430000 @default.
- W2949644003 hasAuthorship W2949644003A5049053722 @default.
- W2949644003 hasAuthorship W2949644003A5055336250 @default.
- W2949644003 hasAuthorship W2949644003A5070373092 @default.
- W2949644003 hasAuthorship W2949644003A5074582540 @default.
- W2949644003 hasBestOaLocation W29496440031 @default.
- W2949644003 hasConcept C108583219 @default.
- W2949644003 hasConcept C11413529 @default.
- W2949644003 hasConcept C147168706 @default.
- W2949644003 hasConcept C153180895 @default.
- W2949644003 hasConcept C154945302 @default.
- W2949644003 hasConcept C160633673 @default.
- W2949644003 hasConcept C188441871 @default.
- W2949644003 hasConcept C19609008 @default.
- W2949644003 hasConcept C31972630 @default.
- W2949644003 hasConcept C41008148 @default.
- W2949644003 hasConcept C50644808 @default.
- W2949644003 hasConcept C95623464 @default.
- W2949644003 hasConceptScore W2949644003C108583219 @default.
- W2949644003 hasConceptScore W2949644003C11413529 @default.
- W2949644003 hasConceptScore W2949644003C147168706 @default.
- W2949644003 hasConceptScore W2949644003C153180895 @default.
- W2949644003 hasConceptScore W2949644003C154945302 @default.
- W2949644003 hasConceptScore W2949644003C160633673 @default.
- W2949644003 hasConceptScore W2949644003C188441871 @default.
- W2949644003 hasConceptScore W2949644003C19609008 @default.
- W2949644003 hasConceptScore W2949644003C31972630 @default.
- W2949644003 hasConceptScore W2949644003C41008148 @default.
- W2949644003 hasConceptScore W2949644003C50644808 @default.
- W2949644003 hasConceptScore W2949644003C95623464 @default.
- W2949644003 hasLocation W29496440031 @default.
- W2949644003 hasOpenAccess W2949644003 @default.
- W2949644003 hasPrimaryLocation W29496440031 @default.
- W2949644003 hasRelatedWork W2090093270 @default.
- W2949644003 hasRelatedWork W2743258233 @default.
- W2949644003 hasRelatedWork W2758063741 @default.
- W2949644003 hasRelatedWork W2771515600 @default.
- W2949644003 hasRelatedWork W2793998976 @default.
- W2949644003 hasRelatedWork W2807311372 @default.
- W2949644003 hasRelatedWork W2971416272 @default.
- W2949644003 hasRelatedWork W3208028783 @default.
- W2949644003 hasRelatedWork W4205170355 @default.
- W2949644003 hasRelatedWork W4221015625 @default.
- W2949644003 isParatext "false" @default.
- W2949644003 isRetracted "false" @default.
- W2949644003 magId "2949644003" @default.
- W2949644003 workType "article" @default.