Matches in SemOpenAlex for { <https://semopenalex.org/work/W2949649089> ?p ?o ?g. }
Showing items 1 to 64 of
64
with 100 items per page.
- W2949649089 endingPage "1384" @default.
- W2949649089 startingPage "1377" @default.
- W2949649089 abstract "Attributed graphs, which contain rich contextual features beyond just network structure, are ubiquitous and have been observed to benefit various network analytics applications. Graph structure optimization, aiming to find the optimal graphs in terms of some specific measures, has become an effective computational tool in complex network analysis. However, traditional model-free methods suffer from the expensive computational cost of evaluating graphs; existing vectorial Bayesian optimization methods cannot be directly applied to attributed graphs and have the scalability issue due to the use of Gaussian processes (GPs). To bridge the gap, in this paper, we propose a novel scalable Deep Graph Bayesian Optimization (DGBO) method on attributed graphs. The proposed DGBO prevents the cubical complexity of the GPs by adopting a deep graph neural network to surrogate black-box functions, and can scale linearly with the number of observations. Intensive experiments are conducted on both artificial and real-world problems, including molecular discovery and urban road network design, and demonstrate the effectiveness of the DGBO compared with the state-of-the-art." @default.
- W2949649089 created "2019-06-27" @default.
- W2949649089 creator A5028694889 @default.
- W2949649089 creator A5065331390 @default.
- W2949649089 creator A5068477431 @default.
- W2949649089 date "2019-07-17" @default.
- W2949649089 modified "2023-10-16" @default.
- W2949649089 title "Deep Bayesian Optimization on Attributed Graphs" @default.
- W2949649089 doi "https://doi.org/10.1609/aaai.v33i01.33011377" @default.
- W2949649089 hasPublicationYear "2019" @default.
- W2949649089 type Work @default.
- W2949649089 sameAs 2949649089 @default.
- W2949649089 citedByCount "4" @default.
- W2949649089 countsByYear W29496490892020 @default.
- W2949649089 countsByYear W29496490892021 @default.
- W2949649089 crossrefType "journal-article" @default.
- W2949649089 hasAuthorship W2949649089A5028694889 @default.
- W2949649089 hasAuthorship W2949649089A5065331390 @default.
- W2949649089 hasAuthorship W2949649089A5068477431 @default.
- W2949649089 hasBestOaLocation W29496490891 @default.
- W2949649089 hasConcept C119857082 @default.
- W2949649089 hasConcept C132525143 @default.
- W2949649089 hasConcept C154945302 @default.
- W2949649089 hasConcept C2778049539 @default.
- W2949649089 hasConcept C2984842247 @default.
- W2949649089 hasConcept C33724603 @default.
- W2949649089 hasConcept C41008148 @default.
- W2949649089 hasConcept C48044578 @default.
- W2949649089 hasConcept C50644808 @default.
- W2949649089 hasConcept C77088390 @default.
- W2949649089 hasConcept C80444323 @default.
- W2949649089 hasConceptScore W2949649089C119857082 @default.
- W2949649089 hasConceptScore W2949649089C132525143 @default.
- W2949649089 hasConceptScore W2949649089C154945302 @default.
- W2949649089 hasConceptScore W2949649089C2778049539 @default.
- W2949649089 hasConceptScore W2949649089C2984842247 @default.
- W2949649089 hasConceptScore W2949649089C33724603 @default.
- W2949649089 hasConceptScore W2949649089C41008148 @default.
- W2949649089 hasConceptScore W2949649089C48044578 @default.
- W2949649089 hasConceptScore W2949649089C50644808 @default.
- W2949649089 hasConceptScore W2949649089C77088390 @default.
- W2949649089 hasConceptScore W2949649089C80444323 @default.
- W2949649089 hasIssue "01" @default.
- W2949649089 hasLocation W29496490891 @default.
- W2949649089 hasLocation W29496490892 @default.
- W2949649089 hasOpenAccess W2949649089 @default.
- W2949649089 hasPrimaryLocation W29496490891 @default.
- W2949649089 hasRelatedWork W3092084929 @default.
- W2949649089 hasRelatedWork W3154094704 @default.
- W2949649089 hasRelatedWork W3199608561 @default.
- W2949649089 hasRelatedWork W4200196661 @default.
- W2949649089 hasRelatedWork W4210854019 @default.
- W2949649089 hasRelatedWork W4288853838 @default.
- W2949649089 hasRelatedWork W4298388782 @default.
- W2949649089 hasRelatedWork W4322008322 @default.
- W2949649089 hasRelatedWork W4322750901 @default.
- W2949649089 hasRelatedWork W1629725936 @default.
- W2949649089 hasVolume "33" @default.
- W2949649089 isParatext "false" @default.
- W2949649089 isRetracted "false" @default.
- W2949649089 magId "2949649089" @default.
- W2949649089 workType "article" @default.