Matches in SemOpenAlex for { <https://semopenalex.org/work/W2949668001> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W2949668001 abstract "Let $S(d,N)$ denote the number of permutations in the symmetric group on $[N]$ which have no decreasing subsequence of length $d+1.$ We prove that $S(d,dn)$ is asymptotically equal to the number of standard Young tableaux of rectangular shape $R(d,2n)$ in the limit $n to infty,$ with $d$ fixed." @default.
- W2949668001 created "2019-06-27" @default.
- W2949668001 creator A5033275343 @default.
- W2949668001 date "2009-06-28" @default.
- W2949668001 modified "2023-09-27" @default.
- W2949668001 title "An Asymptotic Version of a Theorem of Knuth" @default.
- W2949668001 cites W1484937038 @default.
- W2949668001 cites W1691157804 @default.
- W2949668001 cites W1986882781 @default.
- W2949668001 cites W2013378760 @default.
- W2949668001 cites W2014678176 @default.
- W2949668001 cites W2049587182 @default.
- W2949668001 cites W2050039992 @default.
- W2949668001 cites W2069842320 @default.
- W2949668001 cites W2152175091 @default.
- W2949668001 cites W2993539469 @default.
- W2949668001 cites W3198160809 @default.
- W2949668001 hasPublicationYear "2009" @default.
- W2949668001 type Work @default.
- W2949668001 sameAs 2949668001 @default.
- W2949668001 citedByCount "0" @default.
- W2949668001 crossrefType "posted-content" @default.
- W2949668001 hasAuthorship W2949668001A5033275343 @default.
- W2949668001 hasConcept C114614502 @default.
- W2949668001 hasConcept C118615104 @default.
- W2949668001 hasConcept C134306372 @default.
- W2949668001 hasConcept C137877099 @default.
- W2949668001 hasConcept C151201525 @default.
- W2949668001 hasConcept C165368118 @default.
- W2949668001 hasConcept C170006305 @default.
- W2949668001 hasConcept C33923547 @default.
- W2949668001 hasConcept C34388435 @default.
- W2949668001 hasConceptScore W2949668001C114614502 @default.
- W2949668001 hasConceptScore W2949668001C118615104 @default.
- W2949668001 hasConceptScore W2949668001C134306372 @default.
- W2949668001 hasConceptScore W2949668001C137877099 @default.
- W2949668001 hasConceptScore W2949668001C151201525 @default.
- W2949668001 hasConceptScore W2949668001C165368118 @default.
- W2949668001 hasConceptScore W2949668001C170006305 @default.
- W2949668001 hasConceptScore W2949668001C33923547 @default.
- W2949668001 hasConceptScore W2949668001C34388435 @default.
- W2949668001 hasLocation W29496680011 @default.
- W2949668001 hasOpenAccess W2949668001 @default.
- W2949668001 hasPrimaryLocation W29496680011 @default.
- W2949668001 hasRelatedWork W1604647175 @default.
- W2949668001 hasRelatedWork W1677589384 @default.
- W2949668001 hasRelatedWork W1990259394 @default.
- W2949668001 hasRelatedWork W2000915092 @default.
- W2949668001 hasRelatedWork W2033838185 @default.
- W2949668001 hasRelatedWork W2037695996 @default.
- W2949668001 hasRelatedWork W2061993783 @default.
- W2949668001 hasRelatedWork W2742611685 @default.
- W2949668001 hasRelatedWork W2788771106 @default.
- W2949668001 hasRelatedWork W2898278279 @default.
- W2949668001 hasRelatedWork W2963346188 @default.
- W2949668001 hasRelatedWork W2964232420 @default.
- W2949668001 hasRelatedWork W2965145393 @default.
- W2949668001 hasRelatedWork W3030189653 @default.
- W2949668001 hasRelatedWork W3046104947 @default.
- W2949668001 hasRelatedWork W3081272681 @default.
- W2949668001 hasRelatedWork W3098608812 @default.
- W2949668001 hasRelatedWork W3111538409 @default.
- W2949668001 hasRelatedWork W3131530271 @default.
- W2949668001 hasRelatedWork W3177338982 @default.
- W2949668001 isParatext "false" @default.
- W2949668001 isRetracted "false" @default.
- W2949668001 magId "2949668001" @default.
- W2949668001 workType "article" @default.