Matches in SemOpenAlex for { <https://semopenalex.org/work/W2949673356> ?p ?o ?g. }
- W2949673356 abstract "Monte Carlo methods represent the textit{de facto} standard for approximating complicated integrals involving multidimensional target distributions. In order to generate random realizations from the target distribution, Monte Carlo techniques use simpler proposal probability densities to draw candidate samples. The performance of any such method is strictly related to the specification of the proposal distribution, such that unfortunate choices easily wreak havoc on the resulting estimators. In this work, we introduce a textit{layered} (i.e., hierarchical) procedure to generate samples employed within a Monte Carlo scheme. This approach ensures that an appropriate equivalent proposal density is always obtained automatically (thus eliminating the risk of a catastrophic performance), although at the expense of a moderate increase in the complexity. Furthermore, we provide a general unified importance sampling (IS) framework, where multiple proposal densities are employed and several IS schemes are introduced by applying the so-called deterministic mixture approach. Finally, given these schemes, we also propose a novel class of adaptive importance samplers using a population of proposals, where the adaptation is driven by independent parallel or interacting Markov Chain Monte Carlo (MCMC) chains. The resulting algorithms efficiently combine the benefits of both IS and MCMC methods." @default.
- W2949673356 created "2019-06-27" @default.
- W2949673356 creator A5013196979 @default.
- W2949673356 creator A5016290792 @default.
- W2949673356 creator A5084123747 @default.
- W2949673356 creator A5085691944 @default.
- W2949673356 date "2015-05-01" @default.
- W2949673356 modified "2023-10-18" @default.
- W2949673356 title "LAYERED ADAPTIVE IMPORTANCE SAMPLING" @default.
- W2949673356 cites W1494925379 @default.
- W2949673356 cites W1501586228 @default.
- W2949673356 cites W1513873506 @default.
- W2949673356 cites W1565709818 @default.
- W2949673356 cites W1585353408 @default.
- W2949673356 cites W1623013971 @default.
- W2949673356 cites W1658503071 @default.
- W2949673356 cites W1665662210 @default.
- W2949673356 cites W1703031867 @default.
- W2949673356 cites W1836421920 @default.
- W2949673356 cites W1857342729 @default.
- W2949673356 cites W187762159 @default.
- W2949673356 cites W1965870577 @default.
- W2949673356 cites W1977691009 @default.
- W2949673356 cites W1979969656 @default.
- W2949673356 cites W1982942585 @default.
- W2949673356 cites W1983628095 @default.
- W2949673356 cites W1985093013 @default.
- W2949673356 cites W1990119892 @default.
- W2949673356 cites W1995780830 @default.
- W2949673356 cites W2001848173 @default.
- W2949673356 cites W2006722592 @default.
- W2949673356 cites W2008205728 @default.
- W2949673356 cites W2039543594 @default.
- W2949673356 cites W2040276592 @default.
- W2949673356 cites W2055755416 @default.
- W2949673356 cites W2069690729 @default.
- W2949673356 cites W2073412813 @default.
- W2949673356 cites W2090346540 @default.
- W2949673356 cites W2100404003 @default.
- W2949673356 cites W2110407935 @default.
- W2949673356 cites W2111787305 @default.
- W2949673356 cites W2131590927 @default.
- W2949673356 cites W2133420287 @default.
- W2949673356 cites W2135194391 @default.
- W2949673356 cites W2135973421 @default.
- W2949673356 cites W2147357149 @default.
- W2949673356 cites W2161642788 @default.
- W2949673356 cites W2162340617 @default.
- W2949673356 cites W2179435707 @default.
- W2949673356 cites W244465931 @default.
- W2949673356 cites W280128266 @default.
- W2949673356 cites W2952818629 @default.
- W2949673356 cites W316347119 @default.
- W2949673356 cites W78132444 @default.
- W2949673356 cites W788570312 @default.
- W2949673356 cites W2740545418 @default.
- W2949673356 cites W3833188 @default.
- W2949673356 hasPublicationYear "2015" @default.
- W2949673356 type Work @default.
- W2949673356 sameAs 2949673356 @default.
- W2949673356 citedByCount "0" @default.
- W2949673356 crossrefType "posted-content" @default.
- W2949673356 hasAuthorship W2949673356A5013196979 @default.
- W2949673356 hasAuthorship W2949673356A5016290792 @default.
- W2949673356 hasAuthorship W2949673356A5084123747 @default.
- W2949673356 hasAuthorship W2949673356A5085691944 @default.
- W2949673356 hasConcept C105795698 @default.
- W2949673356 hasConcept C106131492 @default.
- W2949673356 hasConcept C111350023 @default.
- W2949673356 hasConcept C11413529 @default.
- W2949673356 hasConcept C119857082 @default.
- W2949673356 hasConcept C121332964 @default.
- W2949673356 hasConcept C121864883 @default.
- W2949673356 hasConcept C126255220 @default.
- W2949673356 hasConcept C13153151 @default.
- W2949673356 hasConcept C132725507 @default.
- W2949673356 hasConcept C140779682 @default.
- W2949673356 hasConcept C144024400 @default.
- W2949673356 hasConcept C149923435 @default.
- W2949673356 hasConcept C185429906 @default.
- W2949673356 hasConcept C187192777 @default.
- W2949673356 hasConcept C19499675 @default.
- W2949673356 hasConcept C28826006 @default.
- W2949673356 hasConcept C2908647359 @default.
- W2949673356 hasConcept C31972630 @default.
- W2949673356 hasConcept C33923547 @default.
- W2949673356 hasConcept C41008148 @default.
- W2949673356 hasConcept C52740198 @default.
- W2949673356 hasConcept C98763669 @default.
- W2949673356 hasConceptScore W2949673356C105795698 @default.
- W2949673356 hasConceptScore W2949673356C106131492 @default.
- W2949673356 hasConceptScore W2949673356C111350023 @default.
- W2949673356 hasConceptScore W2949673356C11413529 @default.
- W2949673356 hasConceptScore W2949673356C119857082 @default.
- W2949673356 hasConceptScore W2949673356C121332964 @default.
- W2949673356 hasConceptScore W2949673356C121864883 @default.
- W2949673356 hasConceptScore W2949673356C126255220 @default.
- W2949673356 hasConceptScore W2949673356C13153151 @default.
- W2949673356 hasConceptScore W2949673356C132725507 @default.
- W2949673356 hasConceptScore W2949673356C140779682 @default.